首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydroepiandrosterone (DHEA), a major steroid secreted by the adrenal gland which decreases with age after adolescence, is available as a nutritional supplement. DHEA is known to have antiproliferative effects but the mechanism is unclear. In this study using BV-2 cells, a murine microglial cell line, we investigated the effect of DHEA on cell viability and the interaction between DHEA and glucose concentrations in the medium. We showed that DHEA inhibited cell viability and G6PD activity in a dose-dependent manner and that the effect of DHEA on cell viability was inversely associated with glucose concentrations in the medium, i.e. lowered glucose strongly enhanced the inhibition of cell viability by DHEA. DHEA inhibited cell growth by causing cell cycle arrest primarily in the G0--G1 phase, and the effect was more pronounced at zero glucose (no glucose added, G0) than high glucose (4.5 mg/ml of the medium, G4.5). Glucose deprivation also enhanced apoptosis induced by DHEA. At G4.5, DHEA did not induce formation of DNA ladder until it reached 200 microM. However, at G0, 100 microM DHEA was able to induce apoptosis, as evidenced by the formation of DNA ladder, elevation of histone-associated DNA fragmentation and increase in cells positively stained with annexin V-FITC and annexin V-FITC/propidium iodide. The interactions between DHEA and glucose support the contention that DHEA exerts its antiproliferative effects through alteration of glucose metabolism, possibly by inhibition of G6PD activity leading to decreased supply of ribose-5-phosphate for synthesis of DNA and RNA. Although DHEA is only antiproliferative at pharmacological levels, our results indicate that its antiproliferative effect can be enhanced by limiting the supply of glucose such as by energy restriction. In addition, the present study shows that glucose concentration is an important factor to consider when studying the antiproliferative and toxicological effects of DHEA.  相似文献   

2.
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell.  相似文献   

3.
Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The “microglial dysfunction hypothesis” of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.  相似文献   

4.
Levels of dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) decline during aging and reach even lower levels in Alzheimer's disease (AD). DHEA is known to exhibit a variety of functional activities in the CNS, including an increase of memory and learning, neurotrophic and neuroprotective effects, and the reduction of risk of age-related neurodegenerative disorders. However, the influence of DHEA on the immune functions of glial cells is poorly understood. In this study, we investigated the effect of DHEA on activated glia. The production of inducible nitric oxide synthase (iNOS) was studied in lipopolysaccharide (LPS)-stimulated BV-2 microglia, as a model of glial activation. The results showed that DHEA but not DHEAS significantly inhibited the production of nitrite in the LPS-stimulated BV-2 cell cultures. Pretreatment of BV-2 cells with DHEA reduced the LPS-induced iNOS mRNA and protein levels in a dose-dependent manner. The LPS-induced iNOS activity in BV-2 cells was decreased by the exposure of 100 microM DHEA. Moreover, DHEA suppressed iNOS gene expression in LPS-stimulated BV-2 cells did not require de novo synthesis of new proteins or destabilize of iNOS mRNA. Since DHEA is biosynthesized by astrocytes and neurons, our findings suggest that it might have an important regulatory function on microglia.  相似文献   

5.
The effect of nitric oxide (NO) donors and lipopolysaccharide (LPS) on the proliferation of rat glomerular mesangial cells was characterized. Exogenous application of a NO donor inhibited serum-induced proliferation in a time- and dose-dependent manner. S-Nitrosoglutathione (GSNO) also increased cGMP generation and arachidonic acid release, but it did not cause any measurable increase in the cytosolic Ca2+ concentration. Chelation of cytosolic Ca2+ or inhibition of mitogen-activated protein kinase (MAPK) kinase had an inhibitory effect on proliferation, but neither enhanced the antiproliferative effect of GSNO. In contrast, inhibition of guanylate cyclase or phospholipase A2 had no effect on proliferation, but partially reversed GSNO-induced antiproliferation by approximately 98 and 65%, respectively. GSNO did not cause cell death. Incubation of cells with LPS induced endogenous NO generation and had an antiproliferative effect. LPS-induced antiproliferation was reversed completely by inhibition of nitric oxide synthase and partially by inhibition of guanylate cyclase or phospholipase A2. GSNO or LPS inhibited serum-induced MAPK activation, and both effects were partially reversed by inhibition of guanylate cyclase or phospholipase A2. Inclusion of 8-bromo-cGMP or arachidonic acid in the growth medium resulted in a similar antiproliferative effect. In conclusion, in rat glomerular mesangial cells, MAPK inhibition and an antiproliferative effect could be induced by either an increase in the cellular concentration of NO or exposure of the cells to LPS. Part of the effect of NO was attributable to the increased cellular cGMP generation and arachidonic acid release.  相似文献   

6.
Potassium bisperoxo(1,10-phenanthroline)oxovanadate, bpV(phen), a powerful protein phosphotyrosine phosphatase inhibitor and a potent insulinomimetic, influenced three fundamental cellular processes in HL-60 human leukemic cells: 1) inhibition of proliferation, 2) induction of differentiation and 3) apoptotic cell death. In the presence of micromolar concentrations of bpV(phen) cell number and DNA synthesis decreased progressively with time of incubation. A single treatment with bpV(phen) (3 microM) activated a differentiation program; after 6 days of incubation 82% of cells were differentiated, but differentiation started already within the first 24 h. Concentrations of 5-10 microM bpV(phen) caused the characteristic DNA ladder pattern, starting after 4.5 h. Differentiation in HL-60 cells appear to be associated with activation of extracellular signal-regulated kinase while apoptosis is connected with phosphorylation and activation of both extracellular signal-regulated kinase and c-Jun N-terminal kinase in a concentration and time-dependent manner. The antiproliferative and apoptotic action of bpV(phen) could be exploited in combination chemotherapy in leukemia.  相似文献   

7.
Oxidative stress induces apoptosis in liver parenchymal cells. The present study demonstrates that the substitution of fructose for glucose as sole carbon source in the incubation medium reduced apoptosis due to reoxygenation up to 50% in cultured rat hepatocytes. This anti-apoptotic action of fructose cannot be explained by the effects of this sugar on the intracellular ATP concentration and the ATP/ADP ratio. Rather, the suppression of apoptosis by fructose seems to be a consequence of remarkably higher intracellular levels of glutathione observed during reoxygenation in fructose-fed hepatocytes in contrast to glucose-fed ones. With fructose as substrate, the generation of excess reactive oxygen species (ROS) during the initial phase of reoxygenation was strongly reduced. With respect to ROS reduction and stabilization of the cellular glutathione pool fructose was found as efficient as a pretreatment of glucose fed cells with N-acetyl-L-cysteine. The enhanced metabolization of ROS by the glutathione/glutathione peroxidase system in fructose-cultured hepatocytes under reoxygenation was expected to improve their mitochondrial status so that late events in the apoptotic pathway are suppressed. This could be confirmed by the reduced release of cytochrome c from mitochondria into the cytosol as well as by the observed decrease of caspase-3 activity during reoxygenation.  相似文献   

8.
T. Ganguly  A. Khar 《Phytomedicine》2002,9(4):288-295
Tylophora alkaloids are plant products known for their antiasthamatic and antiproliferative activities. The underlying cellular changes resulting from inhibition of proliferation were investigated. Tylophora alkaloids induced apoptosis in K562 cells with characteristic apoptotic features like nuclear condensation, apoptotic body formation, flipping of membrane phosphatidylserine, activation of caspase 3 and release of mitochondrial cytochrome c. These studies suggest that the Tylophora alkaloids, in addition to their antiproliferative effects also induce apoptosis in erythroleukemic cells. These observations imply that Tylophora alkaloids could be useful molecules for their antiproliferative activity and for induction of apoptosis in tumor cells.  相似文献   

9.
The polyunsaturated fatty acids gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) are cytotoxic to tumour cells. GLA inhibits Walker 256 tumour growth in vivo, causing alterations in mitochondrial ultrastructure and cellular metabolism. The objective of the present study was to investigate the mechanisms behind fatty acid inhibition of Walker 256 tumour growth under controlled in vitro conditions. At a concentration of 150 microM, both GLA and EPA caused a decrease in cell proliferation and an increase in apoptotic index. Increases in reactive oxygen species (ROS) and lipid peroxide production were identified, as well as alterations in energy metabolism and the deposition of large amounts of triacylglycerol in the form of lipid droplets. Mitochondrial respiratory chain complexes I+III and IV had significantly decreased activity and mitochondrial membrane potential was greatly diminished. Intracellular ATP concentrations were maintained at 70-80% of control values despite the decreased mitochondrial function, which may be in part due to increased utilisation of glucose for ATP generation. Cytochrome c release from mitochondria was found, as was caspase-3-like activation. DNA fragmentation in situ revealed many apoptotic events within the cell population. The mechanism(s) by which ROS and lipid peroxides induce apoptosis remains unclear, but the effects of GLA and EPA appear to involve the mitochondrial pathway of apoptosis induction leading to cytochrome c release, caspase activation, loss of mitochondrial membrane potential and DNA fragmentation.  相似文献   

10.
IL-3 regulates the glycolytic pathway. In Baf-3 cells IL-3 starvation leads to a decrease in glucose uptake and in lactate production. To determine if there is a link between the decreased metabolism induced by growth factor-starvation and the induction of cell death, we have compared the cell death characteristics and the metabolic modifications induced by IL-3-deprivation or glucose-deprivation in Baf-3 cells. We show that in both conditions cells die by an apoptotic process which involves the activation of similar Caspases. Different metabolic parameters (i.e. intracellular ATP levels and lactate accumulation in the culture medium) were measured. We show that IL-3 deprivation leads to a partial decrease in lactate production in contrast to glucose deprivation that completely inhibits lactate production. Similarly following IL-3-starvation a significant drop in the intracellular ATP levels in live cells is observed only after 16 h when a large fraction, more than 50 per cent of cells, is already apoptotic. On the contrary, glucose deprivation is followed by an abrupt decrease in ATP levels in the first 2 h of treatment. However, in the presence of IL-3, cells are able to survive for an extended time in these conditions since 70% of cells survived with low ATP levels for up to 16 h. This was not due to partial inhibition of the apoptotic process by the low level of ATP as glucose-deprivation in the absence of IL-3 led to faster death kinetics of Baf-3 cells compared with IL-3 starvation only. These results indicate that the drop in ATP levels and the triggering of apoptosis can be dissociated in time and that when the glycolytic pathway is strongly inhibited, cells are able to survive with relatively low ATP levels if IL-3 is present. Finally we show that induction of bcl-x by IL-3 protects cells from glucose-deprivation induced cell death.  相似文献   

11.
Our previous studies demonstrated that ricin induces the apoptotic death of U937 cells as evidenced by DNA fragmentation, nuclear morphological changes, and increases in caspase-like activities. In this study, we have found that intracellular NAD(+) and ATP levels decrease in ricin-treated U937 cells and that this decrease is followed by the ricin-mediated protein synthesis inhibition. The PARP inhibitor, 3-aminobenzamide (3-ABA), prevents the depletion in NAD(+) and ATP levels and concomitantly protects U937 cells from the lysis that follows ricin treatment. Hence, the protective action of 3-ABA is due to the inhibition of PARP and does not result from its other pharmacological side effects. Moreover, the enzymatic activity of PARP gradually increases and reaches a maximum level after ricin exposure for 3 h, whereas no significant change in activity was observed in untreated cells. However, 3-ABA has no effect on ricin-mediated DNA fragmentation. In addition, immunoblot analysis revealed that significant PARP cleavage occurred more than 12 h after ricin addition, while DNA fragmentation reached a maximum level within 6 h of incubation. Thus, in the case of ricin-induced apoptosis, it appears that PARP cleavage is not an early apoptotic event associated with the onset of apoptosis. Our results suggest that multiple apoptotic signaling pathways may be triggered by ricin-treatment. Probably, the pathway leading to cell lysis via PARP activation and NAD(+) depletion is independent of the pathway leading to DNA fragmentation in which caspases may be profoundly involved. Other protein synthesis inhibitors, including diphtheria toxin and cycloheximide, were less effective in terms of inducing DNA fragmentation and cytolysis, even at concentrations that cause significant inhibition of protein synthesis. Thus, a specific ricin action mechanism through which ribosomes are inactivated may be responsible for the apoptotic events induced by ricin.  相似文献   

12.
The relation between autophagy and apoptosis has not been clearly elucidated. Here, we reported that apoptosis followed autophagy in insect Spodoptera litura cells (Sl) undergoing glucose starvation. Sl cells have been adapted to Leibovitz-15 medium supplemented with glucose (1.0 g/l) and 5% fetal bovine serum (FBS), used for mammalian cell cultures. If glucose (1 g/l) or glutamine (1.6 g/l) had not been supplemented in L-15 medium with 5% FBS, Sl cells began to form many vacuoles and these vacuoles gradually enlarged in the cytoplasm, which were autophagic vacuoles. However, these large vacuoles began to disappear gradually after 48 h of glucose starvation, accompanied with remarkable apoptosis without apoptotic bodies, which was demonstrated by DNA fragmentation and activation of caspase-3-like. During glucose starvation, Sl cell ATP concentrations gradually decreased. Interestingly, if the conditioned L-15 medium without glucose was replaced with fresh L-15 medium supplemented with glucose or glutamine after the cultures had been starved seriously for 48 h or longer, the formation of apoptotic bodies was initiated. These data suggested that the partial depletion of cell ATP triggered apoptosis following autophagy in glucose-starved Sl cells and the formation of apoptotic bodies required higher level of ATP than DNA fragmentation and activation of caspase-3-like activity. Additionally, the disappearance of autophagic vacuoles, negative staining of neutral red, green staining of acridine orange and diffusion of acid phosphatase activity in Sl cells at the late stage of starvation (over 48 h) suggested that the dysfunction of lysosome was more likely to involve in apoptosis. The facts that Actinomycin D-induced apoptosis was partially inhibited and cyclosporin A, blocking the opening of mitochondrial permeability transition (MPT) pores, inhibited partially apoptosis in glucose-starved Sl cells, suggested the pathway of glucose starvation-induced apoptosis seemed to be different from that induced by actinomycin D and the opening of MPT pores on mitochondria probably involved in apoptosis triggered by glucose starvation, respectively.  相似文献   

13.
Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5alpha-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-zeta/lambda (PKC-zeta/lambda) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-zeta/lambda phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.  相似文献   

14.
Several studies have suggested that both testosterone and dehydroepiandrosterone (DHEA) have weight-reducing and antidiabetic effects, especially in rodent studies; however, the precise mechanism of their action remains unclear. Here, we investigated the effect of DHEA on cell growth in adipose tissue. The appearance of senescence-associated β-galactosidase in stromal vascular fraction (SVF) isolated from Otsuka Long-Evans Tokushima fatty rats, an animal model of inherent obese type 2 diabetes, was prevented by DHEA administration. Next, the effects of DHEA and testosterone were compared in vivo and in vitro to evaluate whether these hormones influence cell growth in adipose tissue. Both DHEA and testosterone reduced body weight and epididymal fat weight equivalently when administered for 4 wk. To assess the effect of DHEA and testosterone on cell growth in adipose tissue, 5-bromo-2'-deoxyuridine (BrdU) uptake by SVF was measured. Quantification analysis of BrdU uptake by examining DNA isolated from each SVF revealed that treatment with DHEA and testosterone reduced cell replication. These results indicated that DHEA- and testosterone-induced decreased adiposity was associated with reduced SVF growth. Incubation with DHEA and testosterone equally decreased BrdU uptake by 3T3-L1 preadipocytes. Pretreatment with the androgen receptor (AR) inhibitor flutamide, but not the estrogen receptor inhibitor fulvestrant, abolished these effects. Knockdown of AR with siRNA also inhibited DHEA-induced decreases in BrdU uptake. These results suggest that DHEA-induced growth suppression of preadipocytes is mediated via AR. Therefore, both DHEA and testosterone similarly decrease adipocyte growth possibly via a common mechanism.  相似文献   

15.
Several studies indicate that mitochondrial ATP production as well as ADP/ATP exchange across mitochondrial membranes are impaired during apoptosis. We investigated whether Bcl-2 could protect against cell death under conditions in which ATP metabolism is inhibited. Inhibition of ATP production using antimycin A (AA) (complex III inhibition) combined with inhibition of ADP/ATP exchange by bongkrekic acid (BA) (adenine nucleotide translocator (ANT) inhibition) induced a sharp decrease in total cellular ATP in FL5.12 parental cells (to 35% of untreated controls after 24 h of incubation). Within 24 and 48 h, 38% and 75% of the cells had died, respectively. However, in stably transfected FL5.12 Bcl-2 subclones, no cell death occurred under these experimental conditions. Similar results were obtained with Jurkat and Bcl-2 overexpressing Jurkat cells. Total cellular ATP levels were equally affected in FL5.12 Bcl-2 overexpressing cells and FL5.12 parental cells. This indicates that Bcl-2 overexpressing cells are able to survive with very low cellular ATP content. Furthermore, Bcl-2 did not protect against cell death by restoring ATP levels. This suggests that, under these conditions, Bcl-2 acts by inhibiting the signalling cascade triggered by the inhibitors that would normally lead to apoptosis.  相似文献   

16.
Anaerobic incubation of rabbit reticulocytes at 37 degrees C in Krebs-Ringer solution supplemented with hemin but devoid of glucose resulted at the end of 1-2h in a drastic decline of their ATP content and an attendant arrest of protein synthesis. Subsequent provision of glucose and reoxygenation of the cells was followed by a rapid replenishment of the ATP pool, while resumption of protein synthesis was markedly delayed. This lag period could be considerably reduced by addition of 5-10 mM adenine or 2,6-diaminopurine to the incubation medium. Lysates prepared from ATP-depleted cells exhibited disaggregation of the polysomes and an inhibition of the nedogenously coded protein synthesis, when tested in a cell-free system supplied with an adequate ATP generator. Both alterations increased in severity with the progressive decay of the intracellular ATP pool. The early phase of partial inhibition following a 40-70% decrease of the cellular ATP level was fully reversible by fortifying the cell-free preparation with dithiothreitol or a suitable NADPH-generating system. Aternative, the inhibition could be also overcome by millimolar amounts of adenine, 2,6-diaminopurine and a variety of other purine derivatives or cyclic AMP. The effect of these compounds was unrelated to the endogenous cyclic AMP pool. Joint addition of both dithiothreitol and cyclic AMP or adenine was necessary for relieving the initiation block in lysates derived from cells depleted of 80-90% of their ATP content. On further aggravating the conditions of energy starvation, an additional requirement for phosphorylated sugars, e.g. glucose 6-phosphate or fructose 1,6-diphosphate, became apparent. ATP depletion brought about by exposing the cells to Antimycin A or 2,4-dinitrophenol resulted in a lesion which was indistinguishable from that induced by anaerobic incubation. On the other hand, energy deprivation in cell-free lysates from untreated reticulocytes, preincubated in the absence of an ATP-generating system failed to duplicate the deleterious effect of intracellular ATP depletion. Some aspects bearing on the biochemical mechanism of the lesion and its reversal are discussed in the light of the available data.  相似文献   

17.
The cellular ATP concentration was tested for its effect on fatty acid biosynthesis from glucose in hepatocytes. ATP was manipulated by adding increasing concentrations of cycloheximide, amytal, atractyloside, 2,4-dinitrophenol or adenosine. A slight decrease in cellular ATP coincided with a stimulation of fatty acid biosynthesis whereas a further lowering of cellular ATP resulted in a gradual inhibition. Increasing the cellular ATP level by titration with adenosine had the opposite effect. These results are in line with the suggestion that fatty acid biosynthesis from glucose is an energy-yielding process which is stimulated by a moderate drop in cellular ATP.  相似文献   

18.
脱氢表雄酮(DHEA)已成为防治绝经后骨质疏松症(PMO)的新策略,但其调控成骨细胞(OB)凋亡的具体分子机制和信号转导途径尚不清楚。我们通过颅骨酶解法原代培养OB,体外模拟雌激素撤退现象,10-7mol/LDHEA分别作用0h、24h、48h、72h后,RT-PCR分析OB中ERα、ERβ和ARmRNA表达;原代OB去血清进一步培养24h,细胞以雌激素受体(ER)拮抗剂ICI182,780(1μmol/L)、雄激素受体(AR)拮抗剂Flutamide(10μmol/L)或U0126(100μmol/L)预处理后给予系列浓度DHEA(10-10-10-5mol/L)孵育72h,AnnexinV-FITC/PI双标记流式细胞仪分析细胞早期凋亡;原代OB以1μmol/LICI182,780或10μmol/LFlutamide预处理25min后给予不同浓度DHEA孵育10min,Westernblotting分析ERK1/2的磷酸化状态。结果表明OBs经10-7mol/LDHEA体外处理24h、48h、72h后,ERβ和ARmRNA水平升高(分别为P<0.05和P<0.01);而ERαmRNA水平无明显变化。10-9-10-6mol/LDHEA可显著抑制血清饥饿诱导的OBs早期凋亡(分别为P<0.05及P<0.01),该抑制效应可被U0126阻滞,ICI182,780或Flutamide则不能阻滞DHEA对OB的抗凋亡效应;Westernblot也显示ICI182,780或Flutamide都不能有效地阻滞DHEA对OB中ERKs磷酸化的诱导作用。因此可认为DHEA经ER或AR非依赖途径抑制OB凋亡;丝裂原活化蛋白激酶(MAPK)信号途径,磷酸化ERK1/2参与介导这一作用。  相似文献   

19.
Liu D  Ren M  Bing X  Stotts C  Deorah S  Love-Homan L  Dillon JS 《Steroids》2006,71(8):691-699
Both dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) affect glucose stimulated insulin secretion, though their cellular mechanisms of action are not well characterized. We tested the hypothesis that human physiological concentrations of DHEA alter insulin secretion by an action initiated at the plasma membrane of beta-cells. DHEA alone had no effect on intracellular calcium concentration ([Ca(2+)](i)) in a rat beta-cell line (INS-1). However, it caused an immediate and dose-dependent inhibition of carbachol-induced Ca(2+) release from intracellular stores, with a 25% inhibition at zero. One nanometer DHEA. DHEA also inhibited the Ca(2+) mobilizing effect of bombesin (29% decrease), but did not inhibit the influx of extracellular Ca(2+) evoked by glyburide (100 microM) or glucose (15 mM). The steroids (androstenedione, 17-alpha-hydroxypregnenolone, and DHEAS) had no inhibitory effect on carbachol-induced intracellular Ca(2+) release. The action of DHEA depended on a signal initiated at the plasma membrane, since membrane impermeant DHEA-BSA complexes also inhibited the carbachol effect on [Ca(2+)](i) (39% decrease). The inhibition of carbachol-induced Ca(2+) release by DHEA was blocked by pertussis toxin (PTX). DHEA also inhibited the carbachol induction of phosphoinositide generation, with a maximal inhibition at 0.1 nM DHEA. Furthermore, DHEA inhibited insulin secretion induced by carbachol in INS-1 cells by 25%, and in human pancreatic islets by 53%. Taken together, this is the first report showing that human physiological concentrations of DHEA decrease agonist-induced Ca(2+) release by a rapid, non-genomic mechanism in INS-1 cells. Furthermore, these data provide evidence consistent with the existence of a specific plasma membrane DHEA receptor, mediating this signal transduction pathway by pertussis toxin-sensitive G-proteins.  相似文献   

20.
Identifying MAPK pathways and understanding their role in microglial cells may be crucial for understanding the pathogenesis of neurodegenerative diseases since activated microglia could contribute to the progressive nature of neurodegeneration. In this study we show that the JNK pathway plays an important role in the survival of resting microglia BV-2 cells, as evidenced by Annexin-V positive staining and caspase-3 activation in cells treated with the specific JNK inhibitor SP600125. During LPS-induced activation of BV-2 cells inhibition of the p38 and JNK pathways with SB203580 and SP600125, respectively, results in apoptosis as detected by apoptotic markers. In the presence SP600125 the phosphorylation of p38 was significantly increased both in control and LPS-activated BV-2 cells. This suggests that the pro-survival role of JNK is possible due to its abrogation of a potentially apoptotic signal mediated by p38 MAPK pathway. Furthermore, inhibition of the p38 MAPK pathway during LPS-induced activation of BV-2 cells resulted in an increased phosphorylation of c-Jun, suggesting that the pro-survival effect of p38 MAPK during inflammatory conditions involves the JNK pathway. In conclusion, the results of this study demonstrate that both the JNK and p38 MAPK pathways possess anti-apoptotic functions in the microglial cell line BV-2 during LPS-induced activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号