首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After the birth of Dolly, media stories on cloning were replete with references to well-known science fiction plots. This essay criticizes the 'imagination deficit' of scientists and journalists, first by problematizing the uncritical adoption of attentuated science fiction plots in the media coverage of Dolly, and second, by proposing to look at more expansive science fiction novels that carefully examine issues such as uniqueness and identity in relation to the new genetics.  相似文献   

2.
Abstract

After the birth of Dolly, media stories on cloning were replete with references to well-known science fiction plots. This essay criticizes the ‘imagination deficit’ of scientists and journalists, first by problematizing the uncritical adoption of attenuated science fiction plots in the media coverage of Dolly, and second, by proposing to look at more expansive science fiction novels that carefully examine issues such as uniqueness and identity in relation to the new genetics.  相似文献   

3.

It has widely been recognized that the media play a key role in framing debates about genetic issues. This paper provides an overview of the major areas of debate within the social scientific literature on media, public understanding of science and human genetics. It evaluates current approaches to assessing the role of the media in influencing public policy debates. It argues that an analysis of the strategies of news sources should occupy a central role in furthering understanding about the ways in which various social actors seek to influence public policy agendas. At present, within the field of human genetics, only a handful of researchers have systematically examined the strategies of news sources from the perspective of the sources themselves. While recent research has focused upon identifying the major sources and how they are used in science reporting, there remains much to be done in uncovering the processes of negotiation and contestation among social actors prior to issues gaining media coverage.  相似文献   

4.
Modern biotechnology has a large and rapidly increasing impact on society. New advances in genetics, stem cells and other areas hold great potential for human health but also presenting socioscientific issues that commonly divide public opinion. While knowledge is necessary to develop informed opinions about biotechnology, they may also be influenced by polarized discourse and fiction in the media. Here, we examined prior knowledge about and attitudes towards health-related biotechnological applications in Year 10 high school students from Western Australia using online questionnaires. The impact of teaching on students’ understanding was tested by repeating the questionnaire after a lesson. Finally, students’ argumentation skills were examined by recording responses to statements about biotechnological applications. We found that, prior to instruction, most students exhibited a reasonable understanding of biotechnology. There was little evidence for alternative conceptions, and instruction led to a diversification in understanding. Attitudes towards biotechnology were generally positive but varied. Despite interest in biotechnological issues, argument for positions was generally cognitive-affective in nature. Consequently, biotechnology is a relevant topic for science education, and presents excellent opportunities to build on pre-existing knowledge. Rather than expanding students’ knowledge, our results suggest educators should focus on deepening existing understanding and strengthening argumentation skills.  相似文献   

5.
Many geneticists are disgruntled with the coverage of genetics in the mass media, yet geneticists themselves have a part to play in improving that coverage. This article aims to help geneticists to do so by explaining the forces that shape science news. It provides some specific options for reducing hype, countering genetic determinism and preventing the use of genetics to reinforce discriminatory messages, slants that many reporters are inclined to give to their articles.  相似文献   

6.
The attraction of human genetics is rooted in optimistic projections of possible futures, where present-day problems are to be solved by technologies-to-come. But hyperbolic optimism with its consequent cycles of expectations, investment and disappointment is a threat to users, investors, and the ethical reputation of the biotechnology field. We report a study of the entire news coverage of genetics in Icelandic mass media in 2000 and 2004. All media promoted optimistic industry-based information largely without critical questions concerning scientific uncertainty, health benefits, or ethical challenges. Criticism and deliberation were thematically narrowed down, in 2000 to the issue of “presumed consent” for nationwide participation in a database proposed by the company Decode genetics, and in 2004 to topics concerning Decode's finances. In a discourse of monetary gain and loss, sustained exploration of scientific, moral and cultural issues has little appeal.  相似文献   

7.
Changes in the biosciences and their relations to society over the last decades provide a unique opportunity to examine whether or not such changes leave traces in the language we use to talk about them. In this article we examine metaphors used in English-speaking press coverage to conceptualize a new type of (interdisciplinary) bioscience: synthetic biology. Findings show that three central metaphors were used between 2008 and May 2010. They exploit social and cultural knowledge about books, computers and engines and are linked to knowledge of three revolutions in science and society (the printing, information and industrial revolutions). These three central metaphors are connected to each other through the concepts of reading/writing, designing and mass production and they focus on science as a revolutionary process rather than on the end results or products of science. Overall, we observed the use of a complex bricolage of mixed metaphors and chains of metaphors that root synthetic biology in historical events and achievements, while at the same time extolling its promises for the future.  相似文献   

8.
The Great East Japan Earthquake was a tragic event requiring critical media involvement. Since the media played an important role in conveying factual information, journalists expressed feeling that it was difficult to guarantee the objectivity of their coverage. As media coverage constructs a socio-culturally shared reality among its audience, an examination of the objectivity and emotionality of the contents of the news coverage is needed. In Study 1, we conducted an exploratory content analysis of TV and newspaper coverage from the six month period following the March 11, 2011 disaster, finding that the news media generally reported neutral and objective factual information about the event, with emotionality shown only in the commentary. In order to examine how media coverage was constructed and evaluated by journalists, in Study 2 we conducted an online survey of 115 journalists working for mass media organizations. We found that that the journalists’ orientations tended to be more objective than emotional, which is consistent with the findings of Study 1. However, their evaluations of the objectivity of the published articles were low, especially for the coverage of the nuclear power plant accident, which was an accident of an unprecedented nature. The negative emotions that journalists experienced during their investigations negatively affected subsequent evaluations of the objectivity of their reporting.  相似文献   

9.

Background

Medical news that appears on newspaper front pages is intended to reach a wide audience, but how this type of medical news is prepared and distributed has not been systematically researched. We thus quantified the level of visibility achieved by front-page medical stories in the United States and analyzed their news sources.

Methodology

Using the online resource Newseum, we investigated front-page newspaper coverage of four prominent medical stories, and a high-profile non-medical news story as a control, reported in the US in 2007. Two characteristics were quantified by two raters: which newspaper titles carried each target front-page story (interrater agreement, >96%; kappa, >0.92) and the news sources of each target story (interrater agreement, >94%; kappa, >0.91). National rankings of the top 200 US newspapers by audited circulation were used to quantify the extent of coverage as the proportion of the total circulation of ranked newspapers in Newseum.

Findings

In total, 1630 front pages were searched. Each medical story appeared on the front pages of 85 to 117 (67.5%–78.7%) ranked newspaper titles that had a cumulative daily circulation of 23.1 to 33.4 million, or 61.8% to 88.4% of all newspapers. In contrast, the non-medical story achieved front-page coverage in 152 (99.3%) newspaper titles with a total circulation of 41.0 million, or 99.8% of all newspapers. Front-page medical stories varied in their sources, but the Washington Post, Los Angeles Times, New York Times and the Associated Press together supplied 61.7% of the total coverage of target front-page medical stories.

Conclusion

Front-page coverage of medical news from different sources is more accurately revealed by analysis of circulation counts rather than of newspaper titles. Journals wishing to widen knowledge of research news and organizations with important health announcements should target at least the four dominant media organizations identified in this study.  相似文献   

10.
Misrepresentation of terminology is a major impediment for attempts at enhancing public conservation literacy. Despite being critically important for improving conservation practice, there have been few systematic analyses of the popular use of conservation terminology. This paper draws from science communication studies and metaphor analysis, to examine how keystone, flagship and umbrella species concepts are used and represented in non-academic contexts. 557 news articles containing these terms were systematically analyzed. Mammals featured in 60% of articles on keystones, 55% on flagships and 63% on umbrella species. Number of articles explaining the terms keystone (35%) and flagship (31%) was low, and keystones were the most misrepresented term. Keystones were metaphorically linked with balance, flagships with representation and umbrella species with protection. These metaphors influenced public interpretation of scientific terminology, oriented actions towards select species, and led to a valuation of such actions. Together, the findings highlight three important aspects of popular use of conservation terminology: (1) communication is largely biased towards mammals, (2) everyday language plays a vital role in the interpretation of concepts, and (3) metaphors influence peoples’ actions and understanding. Conservation biologists need to engage with issues of language if public conservation literacy is to be improved. Further evaluations of concepts with high public and policy relevance, systematic identification of communication shortfalls, and linguistic assessments prior to promoting new terms are potential ways of achieving this.  相似文献   

11.

Background

Publication of clinical research findings in prominent journals influences health beliefs and medical practice, in part by engendering news coverage. Randomized controlled trials (RCTs) should be most influential in guiding clinical practice. We determined whether study design of clinical research published in high-impact journals influences media coverage.

Methods and Findings

We compared the incidence and amount of media coverage of RCTs with that of observational studies published in the top 7 medical journals between 1 January 2013 and 31 March 2013. We specifically assessed media coverage of the most rigorous RCTs, those with >1000 participants that reported ‘hard’ outcomes. There was no difference between RCTs and observational studies in coverage by major newspapers or news agencies, or in total number of news stories generated (all P>0.63). Large RCTs reporting ‘hard’ outcomes did not generate more news coverage than small RCTs that reported surrogate outcomes and observational studies (all P>0.32). RCTs were more likely than observational studies to attract a journal editorial (70% vs 46%, P = 0.003), but less likely to be the subject of a journal press release (17% vs 50%, P<0.001). Large RCTs that reported ‘hard’ outcomes did not attract an editorial more frequently than other studies (61% vs 58%, P>0.99), nor were they more likely to be the subject of a journal press release (14% vs 38%, P = 0.14).

Conclusions

The design of clinical studies whose results are published in high-impact medical journals is not associated with the likelihood or amount of ensuing news coverage.  相似文献   

12.
13.
Abstract

This paper is concerned with representations of the human genome and medical applications of modern biotechnology in Finnish television news. The main focus is on the way that news stories are framed by various linguistic and visual means and on how scientists appearing in the news are positioned. The qualitative analysis shows that in the national frame, biotechnology was treated as a field with great future promise, weighing the prospects of Finnish scientists to succeed in international competition. In the disease frame, the focus was on the achievements of genetic research in the treatment of serious diseases. In the breakthrough frame, it was predicted that genetics will revolutionise the treatment of diseases in ‘the near future’. Finally, news stories presented in the threat frame were mainly concerned to predict and avert problems arising from the potential abuse of genetic research. The analysis suggests that these frames implied certain speaking positions to the scientists appearing in the news stories.  相似文献   

14.
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle–DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle–DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle–DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle–DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.  相似文献   

15.
Based on ethnographic fieldwork among the Lau of Malaita Province, Solomon Islands, this article revisits the “imperial cowboy problem” through an anthropology of technology approach. It examines audience preference for Westerns, or “cowboy movies,” and their rejection of science fiction, or “new technology movies.” Non-verbal, visual communication, material cultures and body techniques are shown to be particularly significant for how unintended audiences engage with foreign visual media, given their own sociocultural context.  相似文献   

16.
Imison M  Chapman S 《PloS one》2010,5(11):e14106

Background

In high-income nations mainstream television news remains an important source of information about both general health issues and low- and middle-income countries (LMICs). However, research on news coverage of health in LMICs is scarce.

Principal Findings

The present paper examines the general features of Australian television coverage of LMIC health issues, testing the hypotheses that this coverage conforms to the general patterns of foreign news reporting in high-income countries and, in particular, that LMIC health coverage will largely reflect Australian interests. We analysed relevant items from May 2005 – December 2009 from the largest health-related television dataset of its kind, classifying each story on the basis of the region(s) it covered, principal content relating to health in LMICs and the presence of an Australian reference point. LMICs that are culturally proximate and politically significant to Australia had higher levels of reportage than more distant and unengaged nations. Items concerning communicable diseases, injury and aspects of child health generally consonant with ‘disease, disaster and despair’ news frames predominated, with relatively little emphasis given to chronic diseases which are increasingly prevalent in many LMICs. Forty-two percent of LMIC stories had explicit Australian content, such as imported medical expertise or health risk to Australians in LMICs.

Significance

Media consumers'' perceptions of disease burdens in LMICs and of these nations'' capacity to identify and manage their own health priorities may be distorted by the major news emphasis on exotic disease, disaster and despair stories. Such perceptions may inhibit the development of appropriate policy emphases in high-income countries. In this context, non-government organisations concerned with international development may find it more difficult to strike a balance between crises and enduring issues in their health programming and fundraising efforts.  相似文献   

17.
The monarch butterfly controversy: scientific interpretations of a phenomenon   总被引:11,自引:0,他引:11  
The future development and use of agricultural biotechnology has been challenged by two preliminary studies indicating potential risk to monarch butterfly populations by pollen from corn engineered to express proteins from Bacillus thuringiensis. Likewise, these studies have also challenged the way in which science should be performed, published in scientific journals and communicated to the public at large. Herein, we provide a history of the monarch controversy to date. We believe a retrospective view may be useful for providing insights into the proper roles and responsibilities of scientists, the media and public agencies and the consequences when they go awry.  相似文献   

18.
Suspicion towards technological advances has progressively grown during the xx(th) century. However, in the XXI(st) century, reading the NBIC (nanotechnology, biotechnology, information technology and cognitive science) report of the National Science Foundation, we can note that science has caught up with science fiction. These changes in public mentality on one side and in scientific capacities on the other argue for an evolution of the debate on sciences. The recent example of the national debate on nanotechnology in France has clearly shown that the public is no longer waiting for additional sources of scientific knowledge but rather waiting for the recognition of its authority to participate in the definition of the national R&D priority and associated scientific strategies. This is all the more legitimate that these strategies will have profound impact on the future of our societies and therefore cannot be decided only by scientists. Hence, it is crucial to identify innovative tools promoting debate on sciences and their technological spin-off. Here, we contend that science fiction has major assets that could face this challenge and facilitate the dialogue between sciences and society.  相似文献   

19.
Science has shown its increased vulnerability because of two recent high-profile articles published in major journals on corn produced through biotechnology: a laboratory report suggesting profound consequences to monarch butterfly populations due to Bt corn pollen and a report suggesting transgenic introgression into Mexican maize. While both studies have been widely regarded as having flawed methodology, publishing these studies has created great consternation in the scientific community, regulatory agencies and the general public. There are roles and responsibilities of scientists, scientific journals, the public media, public agencies, and those who oppose or advocate a specific technology, and serious consequences when those roles and responsibilities go awry. Modern communication may exacerbate the flow of misinformation and easily lead to a decline in public confidence about biotechnology and science. However, common sense tells us that scientific inquiry and the publication and reporting of results should be performed with high standards of ethical behavior, regardless of one's personal perspective on agricultural biotechnology.  相似文献   

20.
Paige Brown 《EMBO reports》2012,13(11):964-967
Many scientists blame the media for sensationalising scientific findings, but new research suggests that things can go awry at all levels, from the scientific report to the press officer to the journalist.Everything gives you cancer, at least if you believe what you read in the news or see on TV. Fortunately, everything also cures cancer, from red wine to silver nanoparticles. Of course the truth lies somewhere in between, and scientists might point out that these claims are at worst dangerous sensationalism and at best misjudged journalism. These kinds of media story, which inflate the risks and benefits of research, have led to a mistrust of the press among some scientists. But are journalists solely at fault when science reporting goes wrong, as many scientists believe [1]? New research suggests it is time to lay to rest the myth that the press alone is to blame. The truth is far more nuanced and science reporting can go wrong at many stages, from the researchers to the press officers to the diverse producers of news.Many science communication researchers suggest that science in the media is not as distorted as scientists believe, although they do admit that science reporting tends to under-represent risks and over-emphasize benefits [2]. “I think there is a lot less of this [misreported science] than some scientists presume. I actually think that there is a bit of laziness in the narrative around science and the media,” said Fiona Fox, Director of the UK Science Media Centre (London, UK), an independent press office that serves as a liaison between scientists and journalists. “My bottom line is that, certainly in the UK, a vast majority of journalists report science accurately in a measured way, and it''s certainly not a terrible story. Having said that, lots of things do go wrong for a number of reasons.”Fox said that the centre sees everything from fantastic press releases to those that completely misrepresent and sensationalize scientific findings. They have applauded news stories that beautifully reported the caveats and limitations of a particular scientific study, but they have also cringed as a radio talk show pitted a massive and influential body of research against a single non-scientist sceptic.“You ask, is it the press releases, is it the universities, is it the journalists? The truth is that it''s all three,” Fox said. “But even admitting that is admitting more complexity. So anyone who says that scientists and university press officers deliver perfectly accurate science and the media misrepresent it […] that really is not the whole story.”Scientists and scientific institutions today invest more time and effort into communicating with the media than they did a decade ago, especially given the modern emphasis on communicating scientific results to the public [3]. Today, there are considerable pressures on scientists to reach out and even ‘sell their work'' to public relations officers and journalists. “For every story that a journalist has hyped and sensationalized, there will be another example of that coming directly from a press release that we [scientists] hyped and sensationalized,” Fox said. “And for every time that that was a science press officer, there will also be a science press officer who will tell you, ‘I did a much more nuanced press release, but the academic wanted me to over claim for it''.”Although science public relations has helped to put scientific issues on the public agenda, there are also dangers inherent in the process of translation from original research to press release to media story. Previous research in the area of science communication has focused on conflicting scientific and media values, and the effects of science media on audiences. However, studies have raised awareness of the role of press releases in distorting information from the lab bench to published news [4].In a 2011 study of genetic research claims made in press releases and mainstream print media, science communication researcher Jean Brechman, who works at the US advertising and marketing research firm Gallup & Robinson, found evidence that scientific knowledge gets distorted as it is “filtered and translated for mass communication” with “slippages and inconsistencies” occurring along the way, such that the end message does not accurately represent the original science [4]. Although Brechman and colleagues found a concerning point of distortion in the transition between press release and news article, they also observed a misrepresentation of the original science in a significant portion of the press releases themselves.In a previous study, Brechman and his colleagues had also concluded that “errors commonly attributed to science journalists, such as lack of qualifying details and use of oversimplified language, originate in press releases.” Even more worrisome, as Fox told a Nature commentary author in 2009, public relations departments are increasingly filling the need of the media for quick content [5].Fox believes that a common characteristic of misrepresented science in press releases and the media is the over-claiming of preliminary studies. As such, the growing prevalence of rapid, short-format publications that publicize early results might be exacerbating the problem. Research has also revealed that over-emphasis on the beneficial effects of experimental medical treatments seen in press releases and news coverage, often called ‘spin'', can stem from bias in the abstract of the original scientific article itself [6]. Such findings warrant a closer examination of the language used in scientific articles and abstracts, as the wording and ‘spin'' of conclusions drawn by researchers in their peer-reviewed publications might have significant impacts on subsequent media coverage.Of course, some stories about scientific discoveries are just not easy to tell owing to their complexity. They are “messy, complicated, open to interpretation and ripe for misreporting,” as Fox wrote in a post on her blog On Science and the Media (fionafox.blogspot.com). They do not fit the single-page blog post or the short press release. Some scientific experiments and the peer-reviewed articles and media stories that flow from them are inherently full of caveats, contexts and conflicting results and cannot be communicated in a short format [7].In a 2012 issue of Perspectives on Psychological Science, Marco Bertamini at the University of Liverpool (UK) and Marcus R. Munafo at the University of Bristol (UK) suggested that a shift toward “bite-size” publications in areas of science such as psychology might be promoting more single-study models of research, fewer efforts to replicate initial findings, curtailed detailing of previous relevant work and bias toward “false alarm” or false-positive results [7]. The authors pointed out that larger, multi-experiment studies are typically published in longer papers with larger sample sizes and tend to be more accurate. They also suggested that this culture of brief, single-study reports based on small data sets will lead to the contamination of the scientific literature with false-positive findings. Unfortunately, false science far more easily enters the literature than leaves it [8].One famous example is that of Andrew Wakefield, whose 1998 publication in The Lancet claimed to link autism with the combined measles, mumps and rubella (MMR) vaccination. It took years of work by many scientists, and the aid of an exposé by British investigative reporter Brian Deer, to finally force retraction of the paper. However, significant damage had already been done and many parents continue to avoid immunizing their children out of fear. Deer claims that scientific journals were a large part of the problem: “[D]uring the many years in which I investigated the MMR vaccine controversy, the worst and most inexcusable reporting on the subject, apart from the original Wakefield claims in the Lancet, was published in Nature and republished in Scientific American,” he said. “There is an enormous amount of hypocrisy among those who accuse the media of misreporting science.”What factors are promoting this shift to bite-size science? One is certainly the increasing pressure and competition to publish many papers in high-impact journals, which prefer short articles with new, ground-breaking findings.“Bibliometrics is playing a larger role in academia in deciding who gets a job and who gets promoted,” Bertamini said. “In general, if things are measured by citations, there is pressure to publish as much and as often as possible, and also to focus on what is surprising; thus, we can see how this may lead to an inflation in the number of papers but also an increase in publication bias.”Bertamini points to the real possibility that measured effects emerging from a group of small samples can be much larger than the real effect in the total population. “This variability is bad enough, but it is even worse when you consider that what is more likely to be written up and accepted for publication are exactly the larger differences,” he explained.Alongside the endless pressure to publish, the nature of the peer-reviewed publication process itself prioritizes exciting and statistically impressive results. Fluke scientific discoveries and surprising results are often considered newsworthy, even if they end up being false-positives. The bite-size article aggravates this problem in what Bertamini fears is a growing similarity between academic writing and media reporting: “The general media, including blogs and newspapers, will of course focus on what is curious, funny, controversial, and so on. Academic papers must not do the same, and the quality control system is there to prevent that.”The real danger is that, with more than one million scientific papers published every year, journalists can tend to rely on only a few influential journals such as Science and Nature for science news [3]. Although the influence and reliability of these prestigious journals is well established, the risk that journalists and other media producers might be propagating the exciting yet preliminary results published in their pages is undeniable.Fox has personal experience of the consequences of hype surrounding surprising but preliminary science. Her sister has chronic fatigue syndrome (CFS), a debilitating medical condition with no known test or cure. When Science published an article in 2009 linking CFS with a viral agent, Fox was naturally both curious and sceptical [9]. “I thought even if I knew that this was an incredibly significant finding, the fact that nobody had ever found a biological link before also meant that it would have to be replicated before patients could get excited,” Fox explained. “And of course what happened was all the UK journalists were desperate to splash it on the front page because it was so surprising and so significant and could completely revolutionize the approach to CFS, the treatment and potential cure.”Fox observed that while some journalists placed the caveats of the study deep within their stories, others left them out completely. “I gather in the USA it was massive, it was front page news and patients were going online to try and find a test for this particular virus. But in the end, nobody could replicate it, literally nobody. A Dutch group tried, Imperial College London, lots of groups, but nobody could replicate it. And in the end, the paper has been withdrawn from Science.”For Fox, the fact that the paper was withdrawn, incidentally due to a finding of contamination in the samples, was less interesting than the way that the paper was reported by journalists. “We would want any journal press officer to literally in the first paragraph be highlighting the fact that this was such a surprising result that it shouldn''t be splashed on the front page,” she said. Of course to the journalist, waiting for the study to be replicated is anathema in a culture that values exciting and new findings. “To the scientific community, the fact that it is surprising and new means that we should calm down and wait until it is proved,” Fox warned.So, the media must also take its share of the blame when it comes to distorting science news. Indeed, research analysing science coverage in the media has shown that stories tend to exaggerate preliminary findings, use sensationalist terms, avoid complex issues, fail to mention financial conflicts of interest, ignore statistical limitations and transform inherent uncertainties into controversy [3,10].One concerning development within journalism is the ‘balanced treatment'' of controversial science, also called ‘false balance'' by many science communicators. This balanced treatment has helped supporters of pseudoscientific notions gain equal ground with scientific experts in media stories on issues such as climate change and biotechnology [11].“Almost every time the issue of creationism or intelligent design comes up, many newspapers and other media feel that they need to present ‘both sides'', even though one is clearly nonsensical, and indeed harmful to public education,” commented Massimo Pigliucci, author of Nonsense on Stilts: How to Tell Science from Bunk [12].Fox also criticizes false balance on issues such as global climate change. “On that one you can''t blame the scientific community, you can''t blame science press officers,” she said. “That is a real clashing of values. One of the values that most journalists have bred into them is about balance and impartiality, balancing the views of one person with an opponent when it''s controversial. So on issues like climate change, where there is a big controversy, their instinct as a journalist will be to make sure that if they have a climate scientist on the radio or on TV or quoted in the newspaper, they pick up the phone and make sure that they have a climate skeptic.” However, balanced viewpoints should not threaten years of rigorous scientific research embodied in a peer-reviewed publication. “We are not saying generally that we [scientists] want special treatment from journalists,” Fox said, “but we are saying that this whole principle of balance, which applies quite well in politics, doesn''t cross over to science…”Bertamini believes the situation could be made worse if publication standards are relaxed in favour of promoting a more public and open review process. “If today you were to research the issue of human contribution to global warming you would find a consensus in the scientific literature. Yet you would find no such consensus in the general media. In part this is due to the existence of powerful and well-funded lobbies that fill the media with unfounded skepticism. Now imagine if these lobbies had more access to publish their views in the scientific literature, maybe in the form of post publication feedback. This would be a dangerous consequence of blurring the line that separates scientific writing and the broader media.”In an age in which the way science is presented in the news can have significant impacts for audiences, especially when it comes to health news, what can science communicators and journalists do to keep audiences reading without having to distort, hype, trivialize, dramatize or otherwise misrepresent science?Pigliucci believes that many different sources—press releases, blogs, newspapers and investigative science journalism pieces—can cross-check reported science and challenge its accuracy, if necessary. “There are examples of bloggers pointing out technical problems with published scientific papers,” Pigliucci said. “Unfortunately, as we all know, the game can be played the other way around too, with plenty of bloggers, ‘twitterers'' and others actually obfuscating and muddling things even more.” Pigliucci hopes to see a cultural change take place in science reporting, one that emphasizes “more reflective shouting, less shouting of talking points,” he said.Fox believes that journalists still need to cover scientific developments more responsibly, especially given that scientists are increasingly reaching out to press officers and the public. Journalists can inform, intrigue and entertain whilst maintaining accurate representations of the original science, but need to understand that preliminary results must be replicated and validated before being splashed on the front page. They should also strive to interview experts who do not have financial ties or competing interests in the research, and they should put scientific stories in the context of a broader process of nonlinear discovery. According to Pigliucci, journalists can and should be educating themselves on the research process and the science of logical conclusion-making, giving themselves the tools to provide critical and investigative coverage when needed. At the same time, scientists should undertake proper media training so that they are comfortable communicating their work to journalists or press officers.“I don''t think there is any fundamental flaw in how we communicate science, but there is a systemic flaw in the sense that we simply do not educate people about logical fallacies and cognitive biases,” Pigliucci said, advising that scientists and communicators alike should be intimately familiar with the subjects of philosophy and psychology. “As for bunk science, it has always been with us, and it probably always will be, because human beings are naturally prone to all sorts of biases and fallacious reasoning. As Carl Sagan once put it, science (and reason) is like a candle in the dark. It needs constant protection and a lot of thankless work to keep it alive.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号