首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

2.

Background

Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO) synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice.

Results

Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS) levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice.

Conclusions

These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.  相似文献   

3.
4.
5.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

6.
1. Uncoupled oxidative phosphorylation in isolated guinea pig brown-adipose-tissue mitochondria is reflected by a low phosphorylation state of adenosine phosphates in the mitochondrial matrix and in the extramitochondrial space during oxidation of succinate or glycerol 1-phosphate in the presence of serum albumin and 100 muM ADP. Recoupling of respiration and phosphorylation in the mitochondria is indicatdd by a dramatic increase in the phosphorylation state of adenine nucleotides in both compartments, when substrates inducing substrate level phosphorylation are respired. In this case ATP/ADP ratios in the extramitochondrial compartment are 10-15 times higher than in the mitochondrial matrix. 2. Recoupling mediated by substrate level phosphorylation depends on the presence of extramitochondrial adenosine phosphate and on intact adenine nucleotide translocation. In the presence of substrate level phosphorylation the amount of extramitochondrial ADP required to restore energy coupling can be extremely low (20 muM ADP or 10 nmol ADP/mg mitochondrial protein respectively). If substrate level phosphorylation is prevented by rotenone or in the presence of atractyloside, 20-50 times higher amounts of extramitochondrial adenine nucleotides are necessary to cause coupled oxidative phosphorylation. The recoupling effect of ATP is significantly stronger than that of ADP. 3. GDP (100 muM) causes a rapid increase of the ATP/ADP ratio in both compartments which is independent of substrate level phosphorylation as well as of the extramitochondrial adenosine phosphate concentration and the adenine nucleotide carrier. 4. The amount of extramitochondrial adenosine phosphate in guinea pig brown-adipose-tissue (18 nmol/mg mitochondrial protein or 2.5 mM respectively) would suffice for recoupling of oxidative phosphorylation mediated by substrate level phosphorylation under conditions in vitro; this suggests that substrate level phosphorylation is of essential importance in brown fat in vivo with respect to energy conditions in the tissue during different states of thermogenesis.  相似文献   

7.
Substrate imbalance is a well-recognized feature of diabetic cardiomyopathy. Insulin resistance effectively limits carbohydrate oxidation, resulting in abnormal cardiac glycogen accumulation. Aims of the present study were to 1) characterize the role of glycogen-associated proteins involved in excessive glycogen accumulation in type 2 diabetic hearts and 2) determine if exercise training can attenuate abnormal cardiac glycogen accumulation. Control (db(+)) and genetically diabetic (db/db) C57BL/KsJ-lepr(db)/lepr(db) mice were subjected to sedentary or treadmill exercise regimens. Exercise training consisted of high-intensity/short-duration (10 days) and low-intensity/long-duration (6 wk) protocols. Glycogen levels were elevated by 35-50% in db/db hearts. Exercise training further increased (2- to 3-fold) glycogen levels in db/db hearts. Analysis of soluble and insoluble glycogen pools revealed no differential accumulation of one glycogen subspecies. Phosphorylation (Ser(640)) of glycogen synthase, an indicator of enzymatic fractional activity, was greater in db/db mice subjected to sedentary and exercise regimens. Elevated glycogen levels were accompanied by decreased phosphorylation (Thr(172)) of 5'-AMP-activated kinase and phosphorylation (Ser(79)) of its downstream substrate acetyl-CoA carboxylase. Glycogen concentration was not associated with increases in other glycogen-associated proteins, including malin and laforin. Novel observations show that exercise training does not correct diabetes-induced elevations in cardiac glycogen but, rather, precipitates further accumulation.  相似文献   

8.
Inbred mice with the mutation diabetes C57BL/KsJ db+/db+ and the mutation obese C57BL/6J ob/ob displayed a total liver mitochondrial capacity to oxidize glutamate or succinate which was approximately eight times greater than the capacity of the C57BL/6J +/+ control mice. This increase in oxidation capacity was estimated by multiplying the observed twofold increase in each of the following components: total liver weight, the mitochondrial protein content per gram of liver, and glutamate or succinate respiration activity per milligram of liver mitochondrial protein. No significant difference in liver mitochondrial function and capacity for oxidation was observed between db+/db+ and ob/ob mutants, which indicated that these results may be primarily mediated by the genetic factors responsible for obesity and hyperphagia in these mutants, and not by the genetic traits associated with diabetes. These findings may provide a biochemical foundation in support of the thrifty gene hypothesis.  相似文献   

9.
The process of mitochondrial dysfunction in ischemic rat liver was studied. A close correlation was found between decrease in the mitochondrial adenine nucleotide content and deterioration of oxidative phosphorylation capacity. The level of total adenine nucleotides, which was 15--20 nmol/mg protein in mitochondria isolated from normal liver, fell to 1--2 nmol/mg protein with concomitant loss of oxidative phosphorylation capacity after anoxic incubation in vitro or in vivo for 120 min. However, neither the permeability barrier to adenine nucleotides nor matrix enzymes were affected under these conditions. The loss of adenine nucleotides was ascribed to degradation of AMP to adenosine and then leakage of the latter. Conventional procedures for maintenance of oxidative phosphorylation capacity of isolated mitochondria, preservation in the cold and addition of ATP or a respiratory substrate under aerobic conditions, were very effective in maintaining the intramitochondrial levels of adenine nucleotides. Of the three species of adenine nucleotides, only AMP was ineffective in maintaining mitochondrial function; mitochondria containing more than 5 nmol of ATP plus ADP/mg protein exhibited normal activity of oxidative phosphorylation, but with less than 2 nmol they showed no activity.  相似文献   

10.
Liver X receptor (LXR) ligands are currently being evaluated as potential therapeutic agents for the treatment of low HDL. The LXR ligand T0901317 elevates ATP binding cassette transporter A1 (ABCA1) and HDL levels in animal models and induces moderate lipogenesis through upregulation of sterol regulatory element binding protein 1c (SREBP1c). Because insulin may also regulate lipogenesis through SREBP1c and fatty acid synthase (FAS), we investigated the effect of an LXR ligand in hyperinsulinemic mice. Administration of T0901317 to male db/db mice for 12 days resulted in a more severe hypertriacylglycerolemia and hepatic triacylglycerol accumulation than observed in nondiabetic mice. The LXR target genes ABCA1, SREBP1c, FAS, and stearoyl-CoA desaturase 1 were upregulated by T0901317 treatment in both diabetic db/db and nondiabetic C57BLKS mice. Changes in lipogenic gene expression were independent of mouse strain, indicating that the severe lipogenesis observed in LXR ligand-treated db/db mice was not due to additive effects of insulin on lipogenic gene expression. Phosphoenolpyruvate carboxykinase expression was suppressed, suggesting that a shift from gluconeogenesis toward lipogenesis could partially explain our observations in db/db mice. Our data suggest that LXR ligands that have effects on both fatty acid and carbohydrate metabolism should be carefully evaluated in obesity, insulin, and leptin resistance.  相似文献   

11.
The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice.  相似文献   

12.
U. Küster  R. Bohnensack  W. Kunz 《BBA》1976,440(2):391-402
The control of mitochondrial ATP synthesis by the extramitochondrial adenine nucleotide pattern was investigated with rat liver mitochondria. It is demonstrated that any stationary state between the two limit states of maximum activity (state 3) and of resting activity (state 4) can be obtained by a hexokinase-glucose trap as an ADP-regenerating system. These intermediate states are characterized by stationary respiratory rates, stationary redox levels of the cytochromes b and c and stationary levels of extramitochondrial ATP and ADP between the rates and levels of the limit states. At a constant concentration of inorganic phosphate the activity of mitochondria between the limit states is controlled by the extramitochondrial ATP/ADP ratio independent of the total concentration of adenine nucleotides present. The control range was found to be between ratios of about 5 and 100 at 10 mM phosphate. At lower ratios the mitochondria are in their maximum phosphorylating state. With succinate + rotenone and glutamate + malate the same control range was observed, indicating that it is independent of the nature of substrate oxidized.The results suggest that in the control range the mitochondrial activity is limited by the competition of ADP and ATP for the adenine nucleotide translocator.  相似文献   

13.
14.
The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic-acid (CDDO) and its methyl ester (CDDO-Me) are undergoing clinical trials in cancer and leukemia therapy. Here we report that CDDO-Me ameliorates diabetes in high fat diet-fed type 2 diabetic mice and in Lepr(db/db) mice. CDDO-Me reduces proinflammatory cytokine expression in these animals. Oral CDDO-Me administration reduces total body fat, plasma triglyceride, and free fatty acid levels. It also improves glucose tolerance and insulin tolerance tests. Its potent glucose-lowering activity results from enhanced insulin action. Hyperinsulinemic-euglycemic clamp reveals an increased glucose infusion rate required to maintain euglycemia and showed a significant increase in muscle-specific insulin-stimulated glucose uptake (71% soleus, 58% gastrocnemius) and peripheral glucose clearance as documented by a 48% increase in glucose disposal rate. CDDO-Me activates AMP-activated protein kinase (AMPK) and via LKB1 activation in muscle and liver in vivo. Treatment of isolated hepatocytes with CDDO-Me directly stimulates AMPK activity and LKB1 phosphorylation and decreases acetyl-coA carboxylase activity; it also down-regulates lipogenic gene expression, suppresses gluconeogenesis, and increases glucose uptake. Inhibition of AMPK phosphorylation using compound C and lentiviral-mediated knockdown of AMPK completely blocks the CDDO-Me-induced effect on hepatocytes as well as C(2)C(12) cells. We conclude that the triterpenoid CDDO-Me has potent anti-diabetic action in diabetic mouse models that is mediated at least in part through AMPK activation. The in vivo anti-diabetogenic effects occur at a dose substantially lower than that used for anti-leukemia therapy. We suggest that CDDO-Me holds promise as a potential anti-diabetic agent.  相似文献   

15.
16.
The aim of this study was to determine the biochemical mechanism(s) responsible for enhanced FA utilization (oxidation and esterification) by perfused hearts from type 2 diabetic db/db mice. The plasma membrane content of fatty acid transporters FAT/CD36 and FABPpm was elevated in db/db hearts. Mitochondrial mechanisms that could contribute to elevated rates of FA oxidation were also examined. Carnitine palmitoyl transferase-1 activity was unchanged in mitochondria from db/db hearts, and sensitivity to inhibition by malonyl-CoA was unchanged. Malonyl-CoA content was elevated and AMP kinase activity was decreased in db/db hearts, opposite to what would be expected in hearts exhibiting elevated rates of FA oxidation. Uncoupling protein-3 expression was unchanged in mitochondria from db/db hearts. Therefore, enhanced FA utilization in db/db hearts is most likely due to increased FA uptake caused by increased plasma membrane content of FA transporters; the mitochondrial mechanisms examined do not contribute to elevated FA oxidation observed in db/db hearts.  相似文献   

17.
Cardiovascular benefits of ubiquinone have been previously demonstrated, and we administered it as a novel therapy in an experimental model of type 2 diabetic nephropathy. db/db and dbH mice were followed for 10 weeks, after randomization to receive either vehicle or ubiquinone (CoQ10; 10mg/kg/day) orally. db/db mice had elevated urinary albumin excretion rates and albumin:creatinine ratio, not seen in db/db CoQ10-treated mice. Renal cortices from db/db mice had lower total and oxidized CoQ10 content, compared with dbH mice. Mitochondria from db/db mice also contained less oxidized CoQ10(ubiquinone) compared with dbH mice. Diabetes-induced increases in total renal collagen but not glomerulosclerosis were significantly decreased with CoQ10 therapy. Mitochondrial superoxide and ATP production via complex II in the renal cortex were increased in db/db mice, with ATP normalized by CoQ10. However, excess renal mitochondrial hydrogen peroxide production and increased mitochondrial membrane potential seen in db/db mice were attenuated with CoQ10. Renal superoxide dismutase activity was also lower in db/db mice compared with dbH mice. Our results suggest that a deficiency in mitochondrial oxidized CoQ10 (ubiquinone) may be a likely precipitating factor for diabetic nephropathy. Therefore CoQ10 supplementation may be renoprotective in type 2 diabetes, via preservation of mitochondrial function.  相似文献   

18.
The purpose of this study was to investigate the anti-hyperlipidemic effect of soy bean extract solution fermented by Bacillus subtilis MORI (BTD-1E) in obese db/db mice. Eight-week-old male db/db mice were administered 33.3 mg/kg BTD-1E solution orally once a day for four weeks. The BTD-1E group showed significantly lower body weight compared with the db control group (P<0.05). The BTD-1E group showed significantly lower serum total cholesterol and LDL cholesterol levels compared with the db control group, respectively (P<0.05, P<0.01). The BTD-1E group showed significantly decreased liver weight relative to final body weight compared with the db control group (P<0.01). After four weeks of BTD-1E administration, lipid droplets in the liver were apparently decreased in the BTD-1E group compared to the db control group. In summary, our results suggest that BTD-1E has an anti-hyperlipidemic effect in the obese mouse model.  相似文献   

19.
20.
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号