首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In intact rat adipocytes hormone-sensitive lipase has been shown to be phosphorylated on serine residues in two different phosphorylation sites: a regulatory site phosphorylated by cyclic AMP-dependent protein kinase and a basal site, which does not directly affect the enzyme activity, phosphorylated by cyclic AMP-independent protein kinase(s) [(1984) Proc. Natl. Acad. Sci USA 81, 3317-3321]. Cyclic GMP-dependent protein kinase catalyzed the phosphorylation of the same two phosphorylation sites on the isolated enzyme, at serine residues. Both sites were phosphorylated at about the same rate, with the hormone-sensitive lipase activity concomitantly enhanced.  相似文献   

2.
The relationship between concanavalin A (ConA) receptors and the chemosensory behaviour of the ciliated protozoan Tetrahymena thermophila was studied using the peptide chemoattractants proteose peptone and fibroblast growth factor. Studies on the chemosensory behaviour in semisolid methylcellulose showed that 50 μg/ml ConA selectively inhibited the persistent element of swimming behaviour by reducing time runs of cells responding to proteose peptone from 12.2±4.5 min to 0.8±0.3 min. Methyl-alpha-D-mannoside, but not methyl-alpha-D-galactoside, abolished the inhibitory effect of ConA, suggesting that mannoside-containing ConA receptors are involved in maintaining a persistent swimming behaviour. Control experiments, carried out in liquids where persistent swimming is less important for cellular behaviour, showed that ConA did not affect proteose-peptone-induced chemoattraction under these conditions as measured by a two-phase assay for chemoattraction. Also, no inhibitory effect of ConA could be found on swimming rates when individual velocities of ConA-treated cells were determined. When tested in liquid chemoattraction assays, ConA was found to be a weak but significant chemoattractant. Studies of the cellular location of ConA receptors on the plasma membrane of starved cells showed an unequal distribution. A preferential clustering of receptors at the anterior end of the cell was observed when determined at high concentrations (100 μg/ml) of fluorescent ConA. Methyl-alpha-D-mannoside but not methyl-alpha-D-galactoside abolished the fluorescent ConA labelling, indicating a preferential clustering of these mannoside-containing receptors at the anterior part of the plasma membrane and cilia. At lower concentrations (25 μg/ml), FITC-ConA produced more general labelling of the entire cell membrane. The results suggest that ConA receptors are necessary for the persistent element of swimming and that binding of ConA to its receptors interferes with processes related to signal transduction rather than by limiting the free movement of cilia required for locomotion. The gradient of receptors seen at high FITC-ConA concentrations may be important for a putative spatial chemosensory mechanism, i.e. chemotaxis.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
4.
We have examined the somatostatin-mediated modulation of acetylcholine release from intact chick embryo choroid tissue and compared these data with those obtained using acutely dissociated neuronal cell bodies from the chick ciliary ganglion. Acetylcholine release, evoked in a calcium-dependent manner by a high potassium (55 mM KCI) stimulation in both preparations, was inhibited almost completely by 100 nM somatostatin. Measurement of intracellular calcium in these neurons revealed that somatostatin blocked the large calcium transient that was observed in control neurons following KCI exposure. The modulatory effect of somatostatin on transmitter release was significantly attenuated by pre-treatment with pharmacologic agents that selectively block cyclic GMP (cGMP)-dependent protein kinase (PKG) or nitric oxide (NO) synthase. It is interesting that this prevention of somatostatin-mediated acetylcholine release inhibition occurred without reversal of the somatostatin-mediated block of the KCl-evoked calcium transient. Furthermore, a NO donor or cGMP analogue could block KCI-evoked acetylcholine release, but only cGMP could reduce the KCI-evoked calcium transient. Although cGMP could reduce the KCI-evoked calcium transient, a cGMP analogue was shown to reduce calcium ionophore-evoked transmitter release. Thus, somatostatin reduces acetylcholine release by modulating calcium influx, but the NO-PKG pathway can inhibit acetylcholine release, and alter somatostatin-mediated inhibition, by affecting transmitter release at some point after calcium entry.  相似文献   

5.
Various histone fractions from several sources differ markedly in their degree of dependence on protein kinase stimulatory modulator for maximum phosphorylation by rat liver cyclic GMP-dependent protein kinase in the presence of cyclic GMP. DEAE-cellulose and QAE-Sephadex chromatography of arginine-rich and mixed histones resulted in the histones displaying increased dependence on the modulator. This increased dependence was apparently due to the removal of contaminating modulator as heat-stable modulator activity could be eluted from the DEAE-cellulose column. Lysine-rich histone was not markedly dependent on the modulator before or after QAE-Sephadex chromatography.  相似文献   

6.
7.
The uncoupler of mitochondrial oxidative phosphorylation, 2-nitro-4-azido-carbonylcyanide phenylhydrazone (N3CCP) which is capable of photoaffinity labeling has been used to examine the effect of uncouplers on the energy conserving membranes of Paracoccus denitrificans and Tetrahymena pyriformis. The N3CCP uncouples respiration in P. denitrificans and T. pyriformis cells with U12 values of 1.05 μM and 0.24 μM, respectively. Binding studies show the presence of 0.65 ± 0.05 high affinity sites per cytochrome a with a Kd of 0.5 ± 0.1 μM in P. denitrificans membranes and 1.4 ± 0.2 sites per cytochrome a2 with a Kd of 0.4 ± 0.1 μM in T. pyriformis membranes. Irradiation of [3H]-N3CCP bound to the membranes leads to a covalent linking of the radioactive uncoupler to a peptide of 10–15 kdaltons as analyzed by SDS-polyacrylamide gel electrophoresis. It is concluded that these two microbial systems contain a specific high affinity uncoupler binding site very similar to that of mammalian mitochondria (Katre, N.V. and Wilson, D.F. (1978) Arch. Biochem. Biophys. 191, 647–656).  相似文献   

8.
Feil  R.  Bigl  M.  Ruth  P.  Hofmann  F. 《Molecular and cellular biochemistry》1993,127(1):71-80
Cyclic GMP-dependent protein kinase (cGMP kinase) is involved in the relaxation of smooth muscle. The enzyme has been cloned and expressed in eukaryotic cell lines but so far not in prokaryotic cells. Three vectors were constructed for the expression of I cGMP kinase inEscherichia coli. Transformation with the pET3a/cgk vector which uses the T7 RNA polymerase/promotor system resulted in efficient accumulation of cGMP kinase. Most of the protein was in an insoluble and catalytic inactive form. Various solubilization and refolding conditions did not yield an active enzyme. A small fraction of the cGMP kinase was present in the soluble cell extract. This fraction bound cGMP with high affinity but had no cGMP stimulated kinase activity. To prevent aggregation two additional vectors were constructed. (I) A bacterial leader sequence, which directs the export of proteins into the periplasmic space, was fused to the aminoterminus of the cGMP kinase. (II) A gram/gram+ shuttle vector for expression under the control of the tac promotor was used. Both constructs directed the synthesis of an isoluble and inactive cGMP kinase. These results suggest that large amounts of cGMP kinase can be expressed inE. coli, but mainly in an isoluble and inactive form. In contrast to eukaryotic cells, bacteria may lack systems for correct protein folding and/or posttranslational modification that are crucial for the productive folding and/or activation of cGMP kinase.  相似文献   

9.
A Ca2+-dependent protein kinase of Tetrahymena thermophila has been partially purified and characterized. The molecular mass of the enzyme is less than that of similar enzymes (for example protein kinase C), being about 55 kDa. After purification and in the presence of Ca2+ the enzyme activity increased. The promoter of protein kinase C (PKC) activity, phorbol myristate acetate (PMA), increased the activity while the protein kinase inhibitor H-7 decreased the activity of the enzyme. The experiments demonstrate the presence, activity and similarity to vertebrate enzymes of a protein kinase at a low level of phylogeny.  相似文献   

10.
In order to ascertain the possible involvement of cyclic GMP in the physiological regulation of the function and development of brown fat of the rat, we have determined its tissue concentration in vivo under a variety of conditions. The steady-state concentration of cyclic GMP in interscapular brown adipose tissue of late foetus was about 80 pmol per g fresh weight. The concentration gradually declined during the first 2 weeks after birth to reach 40 pmol/g fresh weight and then remained constant into adulthood. The cyclic GMP content of brown fat was decreased by chemical sympathectomy and was increased after complete acclimatization of the animals to the cold. The activity of cyclic GMP-dependent protein kinase was also highest in tissue from newborn and cold-acclimatized rats.Both acute cold stress and injection of norepinephrine resulted in a significant but temporary increase in the concentration of cyclic GMP in brown fat, which was followed by a depression of the concentration below values in untreated animals. The concentration of cyclic AMP showed similar pattern of changes. Injection of phenylephrine was followed by a pronounced increase in the cyclic GMP content of brown fat, with little effect upon cyclic AMP. Injection of isoproterenol raised the content of cyclic AMP but not that of cyclic GMP. The ability of norepinephrine and phenylephrine to increase the concentration of cyclic GMP was abolished by pre-treatment of the animals with phenoxybenzamine, but not by pre-treatment with propranolol. Conversely, propranolol but not phenoxybenzamine abolished the effects of norepinephrine on the cyclic AMP content of the tissue.Thus we have established the responsiveness of the cyclic GMP content of brown fat to physiological and pharmacological stimuli and have evidence of the possible participation by cyclic GMP in the α-adrenergic stimulation and in the regulation of proliferative processes in the tissue.  相似文献   

11.
12.
Vasoactive intestinal peptide stimulated cyclic AMP-dependent protein kinase activity in human blood mononuclear cells. The simultaneous presence of a phosphodiesterase inhibitor was required to elicit maximal activation. The apprent Ka value of half the maximal stimulation was about 60 pmol. Secretin exhibited a 170-times lower potency. Other peptides such as glucagon or insulin had no effect event at 1 μM.  相似文献   

13.
Aromatic L-amino acid decarboxylase (AAAD), an enzyme required for the synthesis of catecholamines, indoleamines, and trace amines, is rapidly activated by cyclic AMP-dependent pathways in striatum and midbrain in vivo, suggesting enzyme phosphorylation. We now report that the catalytic subunit of cyclic AMP-dependent protein kinase (PKA) directly phosphorylated AAAD immunoprecipitated from homogenates prepared from the mouse striatum and midbrain in vitro. Under the same phosphorylation conditions, the catalytic subunit of PKA also phosphorylated a recombinant AAAD protein expressed in Escherichia coli transfected with an AAAD cDNA isolated from the bovine adrenal gland. The PKA-induced AAAD phosphorylation of immunoprecipitates from striatum and midbrain was time and concentration dependent and blocked by a specific PKA peptide inhibitor. Incubation of the catalytic subunit of PKA with striatal homogenates increased enzyme activity by approximately 20% in a time- and concentration-dependent manner. Moreover, incubation of the catalytic subunit of PKA with recombinant AAAD increased activity by approximately 70%. A direct phosphorylation of AAAD protein by PKA might underlie the cyclic AMP-induced rapid and transient activation of AAAD in vivo.  相似文献   

14.
15.
In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1+ or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.  相似文献   

16.
In Plasmodium berghei, the orthologous gene of P. falciparum calcium-dependent protein kinase 4 (PfCDPK4) was reported to be essential for the exflagellation of male gametocytes. To elucidate the role of PfCDPK4 in P. falciparum gametogenesis, we characterized the biological function of PfCDPK4 in vitro. PfCDPK4 was purified as a fusion protein that was labeled with [γ-32P]ATP; this labeling was then eliminated by phosphatase. Phosphorylation activity of PfCDPK4 was eliminated when its putative catalytic lysine residue was replaced with alanine. In biochemical analyses, PfCDPK4 was found to have characteristics that were similar to those of homologous proteins from plants. PfCDPK4 phosphorylation was activated when experimental conditions were changed from those characteristic of human blood (37 °C, pH 7.4) to those of the mosquito bloodmeal (at least 5 °C below 37 °C, pH 7.6, with xanthurenic acid (XA)). PfCDPK4 was overexpressed in day 15 gametocytes exposed to XA or human serum. Thus, PfCDPK4 phosphorylation is activated by an increase in Ca2+ concentration or pH and by a decrease in temperature, and is associated with the Ca2+ signals that facilitate P. falciparum gametogenesis.  相似文献   

17.
Abstract: Stimulation of several second messenger pathways induces the expression of immediate early genes such as c- fos , c- jun , junB , and junD , but little is known about their induction via the stimulation of the cyclic GMP pathway. Here we looked at the expression of early genes in pheochromocytoma PC12 cells after activation of cytosolic guanylate cyclase by sodium nitroprusside. This compound spontaneously releases NO, a molecule known to be involved in cell communication. We found that expression of c- fos and junB but not of c- jun or junD is increased upon activation of cyclic GMP pathway. c- fos mRNA expression was the most activated (fourfold at 30 min), whereas junB response was more modest (2.2-fold activation at 60 min). Nuclear extracts of stimulated cells show increased binding capacity to the AP1 binding site consistent with the dose-response curve. The activating effect of nitroprusside could be reproduced by dipyridamole, a selective cyclic GMP phosphodiesterase inhibitor and by 8- p -chlorophenylthio-cyclic GMP, a permeant selective cyclic GMP-dependent protein kinase activator, and abolished by KT5823, an inhibitor of that kinase. The results show that NO promotes early gene activation and AP1 binding enhancement through the stimulation of the cyclic GMP pathway.  相似文献   

18.
The succinate analog itaconic acid was observed to be a competitive inhibitor of the glyoxylate cycle specific enzyme isocitrate lyase (EC 4.1.3.1) in cell-free extracts of Tetrahymena pyriformis. Itaconic acid also inhibited net in vivo glycogen synthesis from glyoxylate cycle-dependent precursors such as acetate but not from glyoxylate cycle-independent precursors such as fructose. The effect of itaconic acid on the incorporation of 14C into glycogen from various 14C-labeled precursors was also consistent with inhibition of isocitrate lyase by this compound. Another analog of succinate which shares a common metabolic fate with itaconic acid, mesaconic acid, had no effect on isocitrate lyase activity in vitro or on 14C-labeled precursor incorporation into glycogen in vivo. In addition, itaconic acid did not affect gluconeogenesis from lactate in isolated perfused rat livers, a system lacking the enzyme isocitrate lyase. These results are taken as evidence that itaconic acid is an inhibitor of glyoxylate cycle-dependent glyconeogenesis Tetrahymena pyriformis via specific competitive inhibition of isocitrate lyase activity.  相似文献   

19.
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis, the gels were incubated with histome and [γ-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 μg per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cyctosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in II Type activity appears to be an early event in permitting cells to leave G1 and resume growth.  相似文献   

20.
Treatment of rat thoracic aortic smooth muscle cells (A-10) with sodium fluoride (NaF) resulted in inhibition of β-adrenergic agonist—and forskolin-induced cAMP and ANF-induced cGMP accumulation and stimulation of diacylglycerol (DAG) accumulation. The concentration of NaF and treatment times required to mediate these inhibitory effects were similar to those observed for stimulation of DAG accumulation. Treatment of the cells with NaF also resulted in a loss of [3H]phorbol dibutyrate (PDBu) binding in the cytosolic portion of the cells. In addition, pre-treatment of the cells with NaF resulted in an increase in the adenylate cyclase activity. Pertussis toxin (PT) pre-treatment of the cells did not significantly affect NaF-mediated effects. Pre-treatment of the cells with protein kinase C (PKC) inhibitor staurosporin partially reversed NaF-mediated inhibition of cyclic nucleotides accumulation. These data suggest that inhibition of the formation of agonist-induced cyclic nucleotides by NaF may be due to the formation of DAG and cAMP which lead to the activation of PKC and cAMP-PK, resulting in phosphorylation of key regulatory protein(s) in the cyclic nucleotides pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号