首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chinese hamster cell line mutant EM9, which has a reduced ability to repair DNA strand breaks, is noted for its highly elevated frequency of sister chromatid exchange, a property shared with cells from individuals with Bloom's syndrome. The defect in EM9 cells was corrected by fusion hybridization with normal human fibroblasts and by transfection with DNA from hybrid cells. The transformants showed normalization of sister chromatid exchange frequency but incomplete correction of the repair defect in terms of chromosomal aberrations produced by 5-bromo-2'-deoxyuridine.  相似文献   

2.
Summary The construction of permanent hybrid cell lines between xeroderma pigmentosum (XP) cells from different complementation groups allows analysis not only of the degree of repair correction but also of the restoration of biological activity to the UV-irradiated cells. With use of an immortal human cell line (HD2) that expresses excision repair defects typical of XP group D, a series of permanent hybrid cells has been produced with XP cells from groups A to H. Excision repair, as measured by incision analysis and unscheduled DNA synthesis, is restored to normal or near normal levels in crosses involving HD2 and cells from XP groups A, B, C, E, F, G, and I. All these hybrids show complementation for the recovery of normal UV restistance. As expected, hybrids expressing poor incision and hypersensitivity to UV were produced in crosses between HD2 and XPD fibroblasts, but they were also produced without exception when XPH was the partner. In the permanent HD2 x XPD or XPH hybrids, analysis of incision capacity reveals abnormally low activity and therefore that there has been no complementation. The true hybrid nature of HD2 x XPH cells has been confirmed by HL-A and -B tissue typing; moreover, detailed kinetic analysis of incision in these cells shows that the XPH phenotype, rather than the XPD, is expressed, i.e. breaks accumulate at low UV fluence of 1 J/m2. To help confirm these findings, another immortal XPD cell line was used in fusions involving HD2, XPH, or XPI. Cells resistant to ultraviolet were produced only with XPI fibroblasts. These data are discussed in terms of whether XPD and H mutations are likely to be allelic with respect to incision.  相似文献   

3.
The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

4.
The in vivo mutagenicity of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) and N-(guanin-8-yl)-N-acetyl-2-aminofluorene (8-AAFdG) in human cells was determined by transfecting various cell lines with plasmids that carried a single adduct at a defined site. 8-OxodG is one of the many DNA modifications formed by oxygen radicals, and was found to be highly miscoding during replication with purified DNA polymerases in vitro. Here we show that the frequency of mutations induced by 8-oxodG during replication in vivo is at most only 2% above background. The most predominant mutation found was a single G----T transversion. The frequency of this transversion was found to be 3 to 5-fold increased in excision repair deficient XP-A cells. Interestingly, also the replication of 8-oxodG containing plasmids was significantly impaired (approximately 4-fold) in the XP-A cells, but not in HeLa cells, normal fibroblasts or XP-A revertant cells. When 8-AAFdG containing plasmids were used, the mutation frequencies did not exceed background levels (less than 2%) with any of the cell lines tested. The presence of 8-AAFdG almost completely inhibited plasmid replication (more than 50-fold) in XP-A cells. Apparently, both 8-AAFdG and 8-oxodG are not or poorly repaired in these cells, causing a block of DNA replication. This suggests that both lesions are substrates for excision repair, although to a varying extent.  相似文献   

5.
The complete human nucleotide excision repair gene FRCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.  相似文献   

6.
XR-1 is a Chinese hamster ovary (CHO) cell mutant which is unusually sensitive to killing by gamma rays in the G1 portion of the cell cycle but has nearly normal resistance to gamma-ray damage in late S phase. The cell-cycle sensitivity correlates with the mutant's inability to repair DNA double-strand breaks (DSBs) produced by ionizing radiation and restriction enzymes. We have previously shown in somatic cell hybrids of XR-1 cells and human fibroblasts that the XR-1 mutation is a recessive mutation. In this study, using somatic cell hybrids formed between XR-1 and human fibroblasts, we map the human complementing gene to chromosome 5 by chromosome-segregation analysis. This gene biochemically restores the hamster defect to wild-type levels of gamma-ray and bleomycin resistance as well as restoring its proficiency to repair DNA DSBs, suggesting that a single gene is responsible for the XR-1 phenotype. We have tentatively assigned the name XRCC4 (X-ray-complementing Chinese hamster gene 4) to this human gene until its biochemical function in repair is discovered.  相似文献   

7.
Somatic cell hybrids constructed between UV-hypersensitive Chinese hamster ovary cell line UV20 and human lymphocytes were used to examine the influence of a human DNA repair gene, ERCC1, on UV photoproduct repair, mutability at several drug-resistance loci, UV cytotoxicity and UV split-dose recovery. In hybrid cell line 20HL21-4, which contains human chromosome 19, UV-induced mutagenesis at the APRT, HPRT and Na+/K+-ATPase loci was comparable to that in repair-proficient CHO AA8 cells, whereas cell line 20HL21-7, a reduced human-CHO hybrid not containing human chromosome 19, exhibited a hypermutable phenotype at all 3 loci indistinguishable from that of UV20 cells. The response of 20HL21-4 cells to UV cytotoxicity reflected substantial but incomplete restoration of wild-type UV cytotoxic response, whereas responses of UV20 and 20HL21-7 cell lines to UV cytotoxicity were essentially the same, reflecting several-fold UV hypersensitivity. Repair of UV-induced (5-6) cyclobutane dimers and (6-4) photoproducts was examined by radioimmunoassay; (6-4) photoproduct repair was deficient in UV20 and 20HL21-7 cell lines, and intermediate in 20HL21-4 cells relative to wild-type CHO AA8 cells. UV split-dose recovery in 20HL21-4 cells was also intermediate relative to AA8 cells. These results show that the human ERCC1 gene on chromosome 19 is responsible for substantial restoration of UV survival and mutation responses in repair-deficient UV20 cells, but only partially restores (6-4) UV photoproduct repair and UV split-dose recovery.  相似文献   

8.
We studied the repair of psoralen adducts in the pol I-transcribed ribosomal RNA (rRNA) genes of excision repair competent Chinese hamster ovary (CHO) cell lines, their UV sensitive mutant derivatives, and their UV resistant transformants, which express a human excision repair gene. In the parental cell line CHO-AA8, both monoadducts and interstrand crosslinks are removed efficiently from the rRNA genes, whereas neither adduct is removed in the UV sensitive derivative UV5; removal of both adducts is restored in the UV resistant transformant CHO-5T4 carrying the human excision repair gene ERCC-2. In contrast, removal of psoralen adducts from the rRNA genes is not detected in another parental CHO cell line CHO-9, neither in its UV sensitive derivative 43-3B, nor in its UV resistant transformant 83-G5 carrying the human excision repair gene ERCC-1. In contrast to such intergenomic heterogeneity of repair, persistence of psoralen monoadducts during replication of the rRNA genes occurs equally well in all CHO cell lines tested. From these data, we conclude that: 1) the repair efficiency of DNA damage in the rRNA genes varies between established parental CHO cell lines; 2) the repair pathways of intrastrand adducts and interstrand crosslinks in mammalian cells share, at least, one gene product, i.e., the excision repair gene ERCC-2; 3) replicational bypass of psoralen monoadducts at the CHO rRNA locus occurs similarly on both DNA strands.  相似文献   

9.
Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) are rare heritable diseases. Patients suffering from XP and 50% of TTD afflicted individuals are photosensitive and have a high susceptibility to develop skin tumors. One solution to alleviating symptoms of these diseases is to express the deficient cDNAs in patient cells as a form of gene therapy. XPC and TTD/XPD cell lines were complemented using retroviral transfer. Expressed wild-type XPC or XPD cDNAs in these cells restored the survival to UVC radiation to wild-type levels in the respective complementation groups. Although complemented XP cell lines have been studied for years, data on cyclobutane pyrimidine dimer (CPD) repair in these cells at different levels are sparse. We demonstrate that CPD repair is faster in the complemented lines at the global, gene, strand specific, and nucleotide specific levels than in the original lines. In both XPC and TTD/XPD complemented lines, CPD repair on the non-transcribed strand is faster than that for the MRC5SV line. However, global repair in the complemented cell lines and MRC5SV is still slower than in normal human fibroblasts. Despite the slower global repair rate, in the complemented XPC and TTD/XPD cells, almost all of the CPDs at "hotspots" for mutation in the P53 tumor database are repaired as rapidly as in normal human fibroblasts. Such evaluation of repair at nucleotide resolution in complemented nucleotide excision repair deficient cells presents a crucial way to determine the efficient re-establishment of function needed for successful gene therapy, even when full repair capacity is not restored.  相似文献   

10.
Using a transient gene expression assay to measure host cell reactivation, the effects of cyclobutane dimer and noncyclobutane dimer uv photoproducts on expression of a reporter gene were examined in normal and repair-deficient Chinese hamster ovary (CHO) cell lines. Ultraviolet damage in plasmid pRSV beta gal DNA, containing the Escherichia coli beta-galactosidase gene, resulted in reduced reporter gene expression in both uv-hypersensitive mutant CHO cell lines UV5 and UV61 relative to wild-type, parental AA8 cells. However, the effects of uv irradiation of transfected plasmid DNA on gene activity were reduced in UV61, a mutant with normal (6-4) photoproduct repair, compared to UV5, which is deficient in (6-4) photoproduct repair; this reduction correlated with the intermediate uv-hypersensitivity of UV61. Selective removal of cyclobutane dimers by in vitro photoreactivation of uv-irradiated plasmid DNA prior to transfection substantially increased reporter gene activity in both uv-hypersensitive mutant cell lines. This increase was significantly greater in UV61 than in UV5, consistent with UV5 being deficient in repair of both (6-4) photoproducts and cyclobutane dimers. These results suggest that unrepaired (6-4) photoproducts in transfected pRSV beta gal plasmid DNA are responsible for a significant fraction of the reduction in transient gene expression observed in recipient uv-hypersensitive CHO cell mutants.  相似文献   

11.
12.
We have investigated DNA-mediated transfer of aminopterin resistance conferred by plasmid and UV resistance conferred by genomic DNA to the Chinese hamster ovary (CHO) cell line UV-135, a UV-sensitive mutant defective in nucleotide excision repair. Plasmid pSV2gpt-CaPO4 coprecipitates induced aminopterin resistance with equal efficiency in the 6-thioguanine-resistant, aminopterin-sensitive, repair-proficient parental line AA8-4(tg-1) and in UV-135(tg-2). Genetic and molecular evidence for genomic DNA-mediated transformation of UV-135(tg-2) cells with a putative excision repair gene were obtained by demonstrating that: (i) UV resistance transformation is dependent upon and specific for genomic DNA from excision repair-competent CHO cells: (ii) UV and drug coresistant colonies are bona fide transferants as verified by hybridization and Southern blotting analysis of pSV2gpt sequences in their genomic DNAs: (iii) confirmed transferants exhibit partial to near normal UV resistances for colony formation: and (iv) UVr transferants have near normal levels of excision repair capacity. The overall frequency of drug and UV resistance cotransformation was 8 X 10(8) per cell plated. This frequency was ca. 200- to 500-fold greater than that expected from coincident but independent UVr reversion and plasmid gene transfer events. DNA transfer techniques with this CHO system will be useful for further analysis of the essential structural DNA sequences, gene cloning, and expression of functional excision repair genes.  相似文献   

13.
14.
A portion of the DNA within intact nuclei of a spontaneously transformed Chinese hamster ovary cell line (CHO-Kl) is relatively resistant to digestion by pancreatic deoxyribonuclease, as compared to nuclei from primary cultures of Chinese hamster ovary fibroblasts. Treatment of CHO-Kl cells with derivatives of 3',5' cyclic AMP (cAMP) under conditions which effect the reverse transformation (RT) of these cells, results in restoration of the increased sensitivity of their DNA to hydrolysis by pancreatic deoxyribonuclease, to the level characteristic of an untransformed, morphologically normal Chinese hamster fibroblast cell line. Dibutyryl (db-)cAMP and 8-bromo-cAMP (Br-cAMP) yielded similar results. The cAMP derivatives employed had no effect on the normal fibroblasts.  相似文献   

15.
A DNA-repair mutant isolated from Chinese hamster V79 cells, V-H1, has been characterized as having only slightly reduced unscheduled DNA synthesis (UDS) and intermediate levels of DNA incision and repair replication after UV exposure. This observation was unexpected, since V-H1 has been shown by genetic complementation analysis to belong to the UV5 complementation class (i.e., class 2), exhibiting equivalent UV hypersensitivity and hypermutability as UV5 cells, which are defective in incision, UDS and repair replication. We have examined the repair of cyclobutane dimers and (6-4) photoproducts in V-H1 and V79 cells and shown that V-H1 cells are deficient in cyclobutane dimer repair, but exhibit intermediate (6-4) photoproduct repair, unlike UV5 cells which are completely deficient in (6-4) photoproduct repair. Our results confirm observations made in other UV-hypersensitive Chinese hamster cell mutants in CHO complementation class 2, and suggest that the gene affected in these mutants (ERCC2) may be involved in at least two distinct repair pathways in hamster cells.  相似文献   

16.
Different cell types from a female patient with Roberts/SC phocomelia syndrome were evaluated quantitatively for the presence of repulsion of heterochromatin and satellite regions of mitotic chromosomes. Whereas EBV-transformed lymphoblasts from an established cell line revealed these phenomena at frequencies equal to those in PHA-stimulated lymphocytes and cultured skin fibroblasts, aneuploid cells from a metastatic melanoma displayed them at 50% lower frequency. Cocultivation of the patient's fibroblasts with either an immortal Chinese hamster cell line or with a human male fibroblast strain carrying a t(4;6)(p14;q21) translocation showed that the phenomenon was not corrected or induced by a diffusible factor or by cell-to-cell contact. In each experiment, only the patient's metaphase spreads revealed chromatid repulsion. In fusion hybrids between the patient's fibroblasts and an established Chinese hamster cell line, the human chromosomes behaved perfectly normally, suggesting that the gene product which is missing or mutant in Roberts/SC phocomelia syndrome is supplied by the Chinese hamster genome.  相似文献   

17.
The mutabilities of normal and xeroderma pigmentosum variant (XP4BE) human fibroblasts by ultraviolet light (UV) were compared under conditions of maximum expression of the 6-thioguanine resistance (TGr) phenotype. Selection was with 20 micrograms TG/ml on populations reseeded at various times after irradiation. Approx. 6--12 days (4--8 population doublings), depending on the UV dose, were necessary for complete expression. The induced mutation frequencies were linear functions of the UV dose but the slope of the line for normal cells extrapolated to zero induced mutants at 3 J/m2. The postreplication repair-defective XP4BE cells showed a higher frequency of TGr colonies than normal fibroblasts when compared at equal UV doses or at equitoxic treatments. The induced frequency of TGr colonies was not a linear function of the logarithm of survival for either cell type. Instead, the initial slope decreased to a constant slope for survivals less than about 50%. The UV doses and induced mutation frequencies corresponding to 37% survival of cloning abilities were 6.7 J/m2 and 6.2 X 10(-5), respectively, for normal cells and 3.75 J/m2 and 17.3 X 10(-5) for the XP4BE cells. The lack of an observable increase in the mutant frequency for normal fibroblasts exposed to slightly lethal UV doses suggests that normal postreplication repair of UV-induced lesions is error-free (or nearly so) until a threshold dose is exceeded.  相似文献   

18.
We have employed the Chinese hamster ovary (CHO) UV-sensitive mutant cell lines, UV5 and UV20, to determine whether ionizing and ultraviolet irradiation enhance the efficiency of DNA-mediated gene transfer in cells deficient in excision repair. Confluent AA8 (wild type), UV5, and UV20 cells were transfected (via polybrene and dimethyl sulfoxide treatments) with the recombinant DNA plasmid, pSV2-gpt, trypsinized, irradiated with either X rays or ultraviolet in suspension, and then plated into flasks. After a 48-h expression time, cells were trypsinized, counted, and plated in XMAT media to select for pSV2-gpt transformation. We report that X-ray irradiation enhances gene transfer in wild-type AA8 and in both UV-sensitive cell lines. Ultraviolet irradiation enhances gene transfer in AA8 and UV20, but not in UV5. Since both UV20 and UV5 are deficient in excision repair, we suggest that ultraviolet-enhanced gene transfer may involve a postreplication repair mechanism deficient in UV5.  相似文献   

19.
The thymidine kinase locus (tk) has been utilised as the target locus to measure the induced mutation frequency following X-irradiation in the X-ray-sensitive xrs5 mutant and its parent CHO K1 line of Chinese hamster cells. Mutations to tk- cells were measured by plating cells in selective medium containing trifluorothymidine after a post-irradiation expression time of 4 days. Our results show that the mutation frequency was 3-4 times higher in the xrs5 mutant than in the CHO K1 cell line. This enhanced mutation frequency in xrs5 is though to result from the deficiency in DNA double-strand break repair in this cell line which also results in the enhanced cell killing and higher frequencies of chromosomal aberrations in response to X-irradiation. The findings of the present study suggest that DNA double-strand break is a critical lesion leading to mutations in irradiated cells.  相似文献   

20.
The UV-sensitive mutant V-B11, isolated from the V79 Chinese hamster cell line (Zdzienicka and Simons, 1987) was further characterized. V-B11 has a slightly increased cross-sensitivity to 3me4NQO, whereas no increased sensitivity towards 4NQO was observed. A slightly increased sensitivity towards EMS and MMS was also found. The mutant shows a defect in the ability to perform the incision step of nucleotide-excision repair after UV irradiation: 2 h after UV exposure, the accumulation of incision breaks in V-B11, in the presence of HU and araC, was about 30% of that found in wild-type V79 cells. V-B11 was crossed to a panel of 6 UV-sensitive Chinese hamster ovary (CHO) cells, which represents all the previously identified 6 complementation groups of UV-sensitive Chinese hamster mutants. Since in all crosses complementation has been observed, V-B11 appears to be the first mutant of a new, 7th, complementation group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号