首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolism of various sulfur compounds in Bacillus subtilis during growth and sporulation was investigated by use of tracer techniques, in an attempt to clarify the mechanism involved in the formation of cystine rich protein of the spore coat.

Methionine, homocysteine, cystathionine, cysteine and some inorganic sulfur compounds (sulfate, sulfite and thiosulfate) were utilized by this organism as sulfur sources for its growth and sporulation. Biosynthesis of methionine from sulfate during growth was more or less inhibited by the addition of cysteine, homocysteine or cystathionine to the culture.

It is suggested from these results that in Bacillus subtilis methionine is synthesized from sulfate through cysteine, cystathionine and homocysteine as is the case in Salmonella or Neurospora. The results also suggest that the metabolism of sulfur-containing amino acids in Bacillus subtilis is strongly regulated by methionine and homocysteine.  相似文献   

2.
Summary. Measurement of plasma total cysteine rather than free dimeric cystine gives a better indication of cysteine status in homocystinuric patients. This is the result of displacement of cysteine from albumin by homocysteine and is related to the plasma homocysteine concentration. In control subjects the free/bound cyst(e)ine ratio was independent of albumin and total cysteine concentrations. In homocystinuric (HCU) patients both free and total cyst(e)ine values differed significantly from control values (P < 0.001) but whilst free cystine considerably overlapped control values the total cysteine concentrations were almost invariably lower. The possible consequences of this on glutathione synthesis was explored by assay of plasma total glutathione but no evidence for glutathione deficiency was found. Measurement of total cysteine, rather than free cystine, provides a better indication of cysteine status in HCU. Received February 1, 2001 Accepted November 13, 2001  相似文献   

3.
Disulfide forms of homocysteine account for >98% of total homocysteine in plasma from healthy individuals. We recently reported that homocysteine reacts with albumin-Cys(34)-S-S-cysteine to form homocysteine-cysteine mixed disulfide and albumin-Cys(34) thiolate anion. The latter then reacts with homocystine or homocysteine-cysteine mixed disulfide to form albumin-bound homocysteine (Sengupta, S., Chen, H., Togawa, T., DiBello, P. M., Majors, A. K., Büdy, B., Ketterer, M. E., and Jacobsen, D. W. (2001) J. Biol. Chem. 276, 30111-30117). We now extend these studies to show that human albumin, but not ceruloplasmin, mediates the conversion of homocysteine to its low molecular weight disulfide forms (homocystine and homocysteine-cysteine mixed disulfide) by thiol/disulfide exchange reactions. Only a small fraction of homocystine is formed by an oxidative process in which copper bound to albumin, but not ceruloplasmin, mediates the reaction. When copper is removed from albumin by chelation, the overall conversion of homocysteine to its disulfide forms is reduced by only 20%. Ceruloplasmin was an ineffective catalyst of homocysteine oxidation, and immunoprecipitation of ceruloplasmin from human plasma did not inhibit the capacity of plasma to mediate the conversion of homocysteine to its disulfide forms. In contrast, ceruloplasmin was a highly efficient catalyst for the oxidation of cysteine and cysteinylglycine to cystine and bis(-S-cysteinylglycine), respectively. However, when thiols (cysteine and homocysteine) that are disulfide-bonded to albumin-Cys(34) are removed by treatment with dithiothreitol to form albumin-Cys(34)-SH (mercaptalbumin), the conversion of homocysteine to its disulfide forms is completely blocked. In conclusion, albumin mediates the formation of disulfide forms of homocysteine by thiol/disulfide exchange, whereas ceruloplasmin converts cysteine to cystine by copper-dependent autooxidation.  相似文献   

4.
Syntrophic cocultures of Geobacter sulfurreducens and Wolinella succinogenes oxidize acetate with nitrate as terminal electron acceptor. It has been postulated earlier that electrons are transferred in these cocultures not via hydrogen, but via a different carrier, e.g., a small c-type cytochrome that is detected in the supernatant of growing cultures. In the present study, L -cysteine, which was provided as a reducing agent, was found to mediate the electron transfer between the two partners. Low concentrations of L -cysteine or L -cystine (10-100 microM) supported syntrophic growth, and no acetate oxidation was observed in the absence of cysteine or cystine. Cell suspensions of G. sulfurreducens or coculture cell suspensions reduced cystine to cysteine, and suspensions of W. succinogenes or coculture suspensions oxidized cysteine with nitrate, as measured by the formation or depletion of free thiol groups. Added cysteine was rapidly oxidized by the coculture during growth, but the formed cystine was not entirely rereduced even under acceptor-limited conditions. The redox potential prevailing in acetate-oxidizing cocultures was -160 to -230 mV. Sulfide at low concentrations supported syntrophic growth as well and could replace cysteine. Neither growth nor acetate degradation was found with D-cysteine, homocysteine, cysteamine, 3-mercaptopropionate, dithiothreithol, thioglycolate, glutathione, coenzyme M, dimethylsulfoxide, trimethylamine- N-oxide, anthraquinone-2,6-disulfonate, or ascorbate.  相似文献   

5.
Transport of L-cystine across the cell membrane is essential for synthesis of the major cellular antioxidant, glutathione (gamma-glutamylcysteinylglycine). In this study, uptake of L-[14C]cystine by three of the high affinity sodium-dependent mammalian glutamate transporters (GLT1, GLAST and EAAC1) individually expressed in HEK cells has been determined. All three transporters display saturable uptake of L-[14C]cystine with Michaelis affinity (K(m)) constants in the range of 20-110 microM. L-glutamate and L-homocysteate are potent inhibitors of sodium-dependent L-[14C]cystine uptake in HEK(GLAST), HEK(GLT1) and HEK(EAAC1) cells. Reduction of L-[14C]cystine to L-[14C]cysteine in the presence of 1mM cysteinylglycine increases the uptake rate in HEK(GLT1), HEK(GLAST) and HEK(EAAC1) cells, but only a small proportion (<10%) of L-[14C]cysteine uptake in HEK(GLT1) and HEK(GLAST) cells occurs by the high affinity glutamate transporters. The majority (>90%) of L-[14C]cysteine transport in these cells is mediated by the ASC transport system. In HEK(EAAC1) cells, on the other hand, L-[14C]cysteine is transported equally by the ASC and EAAC1 transporters. L-homocysteine inhibits L-[14C]cysteine transport in both HEK(GLAST) and HEK(GLT1) cells, but not in HEK(EAAC1) cells. It is concluded that the quantity of L-[14C]cyst(e)ine taken up by individual high affinity sodium-dependent glutamate transporters is determined both by the extracellular concentration of amino acids, such as glutamate and homocysteine, and by the extracellular redox potential, which will control the oxidation state of L-cystine.  相似文献   

6.
It is well established that when cystine-depleted cystinotic cells are cultured in cystine-containing medium, they reaccumulate cystine within their lysosomes more rapidly than when cultured in cystine-free medium. This has been a puzzling result, since the lysosome membrane of cystinotic cells is impermeable to cystine. To probe the mechanism of cystine reaccumulation, we have measured reaccumulation in the presence of colchicine, an inhibitor of pinocytosis, or of glutamate, a competitive inhibitor of cystine transport into human fibroblasts. Colchicine had no effect, thus eliminating pinocytosis as a putative mechanism for cystine translocation from the culture medium to the lysosomes. Glutamate, however, strongly inhibited cystine reaccumulation. It is concluded that the true mechanism is as follows. 1. Exogenous cystine crosses the plasma membrane on the cystine-glutamate porter. 2. Cystine is reduced in the cytoplasm by GSH. 3. The cysteine that is generated enters the lysosome, where it becomes cystine by participating in the reduction of cystine residues during intralysosomal proteolysis, or by autoxidation.  相似文献   

7.
We have shown previously that extracellular cysteine is necessary for cellular responses to S-nitrosoalbumin. In this study we have investigated mechanisms involved in accumulation of extracellular cysteine outside vascular smooth muscle cells and characterized the role of cystine-cysteine release in transfer of nitric oxide (NO)-bioactivity. Incubation of cells with cystine led to cystine uptake, reduction, and cysteine release. The process was inhibitable by extracellular glutamate, suggesting a role for system x(c)(-) amino acid transporters. Smooth muscle cells express this transporter constitutively and induction of the light chain component (xCT) by either diethyl maleate or 3-morpholino-sydnonimine (SIN-1) led to glutamate-inhibitable cystine uptake and an increased rate of cysteine release from cells. Likewise, overexpression of xCT in smooth muscle cells or endothelial cells led to glutamate-inhibitable cysteine release. The resulting extracellular cysteine was found to be required for transfer of NO from extracellular S-nitrosothiols into cells via system L transporters leading to formation of cellular S-nitrosothiols. Cysteine release coupled to cystine uptake was also found to be required for cellular responses to S-nitrosoalbumin and facilitated S-nitrosoalbumin-mediated inhibition of epidermal growth factor signaling. These data show that xCT expression can constitute a cystine-cysteine shuttle whereby cystine uptake drives cysteine release. Furthermore, we show that extracellular cysteine provided by this shuttle mechanism is necessary for transfer of NO equivalents and cellular responses to S-nitrosoablumin.  相似文献   

8.
Abstract

Glutathione is an intracellular antioxidant that often becomes depleted in pathologies with high oxidative loads. We investigated the provision of cysteine for glutathione synthesis to the human erythrocyte (red blood cell; RBC). Almost all plasma cysteine exists as cystine, its oxidized form. In vitro, extracellular cystine at 1.0 mM sustained glutathione synthesis in glutathione-depleted RBCs, at a rate of 0.206 ± 0.036 μmol (L RBC)?1min?1 only 20% of the maximum rate obtained with cysteine or N-acetylcysteine. In plasma-free solutions, N-acetylcysteine provides cysteine by intracellular deacetylation but to achieve maximum rates of glutathione synthesis by this process in vivo, plasma N-acetylcysteine concentrations would have to exceed 1.0 mM, which is therapeutically unattainable. 1H-NMR experiments demonstrated that redox exchange reactions between NAC and cystine produce NAC-cysteine, NAC-NAC and cysteine. Calculations using a mathematical model based on these results showed that plasma concentrations of N-acetylcysteine as low as 100 μM, that are attainable therapeutically, could potentially react with plasma cystine to produce ~50 μM cysteine, that is sufficient to produce maximal rates of glutathione synthesis. We conclude that the mechanism of action of therapeutically administered N-acetylcysteine is to reduce plasma cystine to cysteine that then enters the RBC and sustains glutathione synthesis.  相似文献   

9.
Human diploid fibroblasts take up cystine in the culture medium and the cystine is immediately reduced to cysteine in the cells. It is found that cysteine thus formed is rapidly released from the cells into the medium and accumulates there. The system transporting cysteine is convincingly similar to the ASC system described by Christensen et al. (1967). Since cysteine in the medium is sensitive to autoxidation and readily changes back to cystine, the uptake of cystine seems crucial to the cells. Inhibitors of cystine uptake, such as glutamate and homocysteate, potently reduce the intracellular and extracellular levels of cysteine. These inhibitors modify the cell growth depending upon the cystine concentration is physiological. An excessive concentration of cystine is in itself inhibitory action is antagonized by glutamate or homocysteate.  相似文献   

10.
11.
Erickson HK 《Biochemistry》2000,39(31):9241-9250
Participation of the formation of the cystine between cysteine 225 and cysteine 462 in the R1 protein to the enzymatic mechanism of aerobic ribonucleoside diphosphate reductase from Escherichia coli has been examined by use of rapid quenching and site-directed immunochemistry. Prereduced ribonucleotide reductase in the presence of ATP was mixed with CDP in a quench flow apparatus. The reaction was terminated with a solution of acetic acid and N-ethylmaleimide. The protein was precipitated and digested with chymotrypsin and the proteinase from Staphylococcus aureus strain V8 in the presence of N-ethylmaleimide to yield the peptide SS[S-(N-ethylsuccinimid-2-yl)cysteinyl]VLIE containing cysteine 225 and the mixed disulfide between the peptide SSCVLIE and the peptide IALCTL containing cysteine 462. These two peptides were retrieved together from the digest by immunoadsorption. The affinity-purified peptides were modified at their amino termini with the fluorescent reagent 6-aminoquinolyl-N-hydroxysuccimidyl carbamate and submitted to high-pressure liquid chromatography. The areas of the respective peaks of fluorescence corresponding to the S-(N-ethylsuccimidyl) peptide, and the mixed disulfide were used to determine the percentage of the cystine that had formed during each interval. The rate constant for the formation of the cystine following the association of free, fully reduced ribonucleotide reductase with the reactant CDP was 8 s(-)(1). Because only 50% of the active sites participated in this pre-steady-state reaction, the maximum steady-state rate consistent with the involvement of this cystine in the enzymatic reaction would be 4 s(-1). Since the turnover number of the enzyme under the same conditions in a steady state assay was only 1 s(-)(1), the formation of the cystine between these two cysteines is kinetically competent.  相似文献   

12.
Exogenous electron transfer mediators employed by Fe(III)-reducing bacteria are believed to govern the kinetics and equilibrium of bioreduction of Fe(III) in solid phase. In contrast to a large number of studies on humic substances and analog anthraquinone-2,6-disulfonate (AQDS), our knowledge of other potential electron shuttles involved in Fe(III) reduction is limited. The purpose of the present study was to understand the role of cystine and cysteine in reduction of iron-rich smectite (nontronite, NAu-2) by Shewanella species. A series of abiotic and biotic experiments were conducted in nongrowth media (bicarbonate buffered, pH = 7.0). Fe(II) and cysteine concentrations were monitored over the course of the bioreduction experiments with wet chemistry, and the unreduced and reduced nontronites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that all Shewanella species tested here were capable of reducing cystine to cysteine. Either cystine or cysteine amendments significantly stimulated the Fe(III) bioreduction rate and extent. The initial reduction rate was linearly correlated with cystine or cysteine concentration. The reduction extent (18.7–22.3%) calculated from bioreactor with cystine or cysteine was slightly lower than those with AQDS (26.3%). Mineralogical analysis demonstrated that cystine or cysteine facilitated the reaction of smectite to illite as a result of Fe(III) bioreduction. Thus, we concluded that, in our experiments, cystine and cysteine functioned as electron carrier in the smectite reduction systems, and were favorable factors influencing smectite illitization.  相似文献   

13.
In order to determine whether the cysteine requirement of human T lineage cells is met primarily by extracellular cysteine or by cystine, amino-acid-transport activities were measured in resting and mitogenically stimulated human peripheral blood lymphocytes (PBL) and several human T cell clones and T cell tumors. The transport activity of the small neutral amino acids cysteine and alanine (ASC system) and the transport of the cationic amino acid arginine (y+ system) were found to be markedly increased after stimulation of PBL by the T cell mitogen phytohemagglutinin from Phaseolus vulgaris. The anionic transport activity for cystine and glutamate (Xc- system), in contrast, was extremely weak in both resting and activated human PBL and also in all human T cell lines under test. The weak system Xc- activity of human T lineage cells was further confirmed by an independent line of experiments showing that an increase of the extracellular concentration of glutamate, i.e. a competitive inhibitor of cystine transport, causes a decrease in the intracellular cystine levels in cells of the promonocytic line U937, but not in T lineage cells (Molt-4). A third set of experiments showed that the rate of DNA synthesis in mitogenically stimulated human PBL is strongly influenced by variations of the extracellular cysteine level, even in cultures with relatively high and approximately physiological concentrations of cystine. Cysteine cannot be replaced in this case by the addition of corresponding amounts of cystine or methionine. This demonstrates an important functional consequence of the weak cystine transport activity of human lymphocytes. The results may be relevant for the pathogenetic mechanism of the acquired immunodeficiency syndrome, since the mean plasma cysteine concentration of human-immunodeficiency-virus-1-seropositive persons was found to be strongly decreased in comparison with that of healthy blood donors, and since the cysteine level even of healthy persons is extremely low in comparison with all other protein-forming amino acids.  相似文献   

14.
Abstract— The glutathione level and the factors affecting this level were investigated in fetal rat brain cells in a primary culture. Early in the culture, the glutathione level of the brain cells decreased, but after 5 h it began to increase. This increase was not observed in a cystine-free medium and was prevented by excess glutamate. Cystine was taken up in freshly isolated brain cell suspensions, and its rate increased during the culture. The cystine uptake was mediated by a Na+-independent, glutamate-sensitive route previously found in various types of cells and designated as system xc. The uptake of cystine is a crucial factor in maintaining the glutathione level of the cells under culture, because it provides cysteine for the cells for glutathione synthesis. Cysteine was undetectable in the medium before the culture, but it appeared, though at a very low level, when the brain cells were cultured there. The source of this cysteine was the cystine in the medium. Presumably the decrease in the glutathione level of the cells in the early stage of the culture resulted from the fact that the medium did not contain cysteine. The enhancement of the cystine uptake during culture may constitute a protective mechanism against the oxidative stress to which the cultured cells are exposed. Regulation of the glutathione level in fetal brain cells in vivo by the transport of cystine and cysteine is discussed.  相似文献   

15.
16.
Induction of cystine transport activity in human fibroblasts by oxygen   总被引:4,自引:0,他引:4  
The transport activity for cystine in cultured human fibroblasts decreased after incubation of the cells under a low oxygen concentration. After the incubation for 48 h under 3% oxygen, the Vmax of the transport was decreased to less than one-third of that of the control cells, with little change in Km. The similar transport activity was observed in the cells cultured under 3% oxygen for 10-40 days with several times of passages. When these low oxygen-cultured cells were incubated under room air, the activity was enhanced with a lag of about 4 h and was almost completely restored within 24 h. This restoration required protein synthesis. The cystine transport activity increased by 50% after exposure of the cells to hyperoxia (40% oxygen). From these results it is concluded that the transport activity for cystine is induced by oxygen. In contrast, little change in the transport activities for alanine and leucine occurred in the cells exposed to the corresponding hypoxia or hyperoxia. Since the cystine transported into the cells is reduced to cysteine and the cysteine readily exits to the culture medium where it autoxidizes to cystine, a cystine-cysteine cycle across the plasma membrane has been postulated. Since the autoxidation of cysteine in the culture medium was markedly slowed down under the low oxygen concentration, the change in the cystine transport activity in response to the oxygen concentration was regarded as pertinent. Induction of the cystine transport activity may constitute a protective mechanism against the oxidative stress, to which the culture cells are exposed, by providing the cells with cysteine which is mainly incorporated into glutathione.  相似文献   

17.
The autooxidation of cysteine and homocysteine to their disulfide forms was determined by measuring the time course of thiol groups disappearance. We found the oxidative chemistry of cysteine and homocysteine to be quite different. In the absence of added Cu(II), cysteine autooxidized at a slower rate than homocysteine, though in its presence cysteine oxidation was much faster, homocysteine being found to be a poor responder to copper catalysis. Albumin speeded up the spontaneous oxidation of both aminothiols, the reaction being faster with cysteine than with homocysteine. The copper content of different albumins was found to be highly variable, ranging from 12.75 to 0.64 microg Cu(II)/g albumin. We propose that copper bound to albumin possesses redox cycling activity to perform cysteine oxidation since: (i) copper elimination by copper chelators markedly reduces oxidation; and (ii) a positive correlation exists between the albumin copper content and the oxidation reaction rate.  相似文献   

18.
Total homocysteine, total cysteine, and methionine have been extracted and partially purified from serum and urine using reduction with 2-mercaptoethanol followed by cation-exchange chromatography and anion-exchange chromatography. The t-butyldimethylsilyl derivatives were prepared and analyzed using capillary gas chromatography-mass spectrometry with selected ion monitoring. The addition of DL-[3,3,3',3',4,4,4',4'-2H8]homocystine, DL-[3,3,3',3'-2H4]cystine, and L-[methyl-2H3]methionine to the starting samples prior to the reduction of all disulfides, including the deuterated internal standards, with 2-mercaptoethanol makes it possible to quantitate all three amino acids. Normal ranges for total homocysteine, total cysteine, and methionine have been determined in human and rat serum and in human urine.  相似文献   

19.
Cystinosis is an inherited disorder due to mutations in the CTNS gene which encodes cystinosin, a lysosomal transmembrane protein involved in cystine export to the cytosol. Both accumulation of cystine in the lysosome and decreased cystine in the cytosol may participate in the pathogenic mechanism underlying the disease. We observed that cystinotic cell lines have moderate decrease of glutathione content during exponential growth phase. This resulted in increased solicitation of oxidative defences of the cell denoted by concurrent superoxide dismutase induction, although without major oxidative insult under our experimental conditions. Finally, decreased glutathione content in cystinotic cell lines could be counterbalanced by a series of exogenous precursors of cysteine, denoting that lysosomal cystine export is a natural source of cellular cysteine in the studied cell lines.  相似文献   

20.
1. Methods have been described for reducing protein S-S groups, for oxidizing protein SH groups, and for estimating protein S-S and SH groups. 2. It has been found necessary in estimating the cystine content of proteins by the Folin-Marenzi method to take into account any cysteine that may be present. 3. A method for estimating the cysteine content of proteins has been described. 4. With these methods, estimations have been made of the S-S and SH groups and of the cystine and cysteine contents of a number of proteins. 5. In a denatured, but unhydrolyzed protein, the number of S-S and SH groups is equivalent to the quantity of cystine and cysteine found in the protein after hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号