首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To gain a comprehensive understanding of the molecular mechanism of heavy metal accumulation in Brassica juncea, comparative proteomic approaches were used to analysis protein profiles in leaf tissues of 6-week-old B. juncea after exposure to 100 µM Ni. Proteomic analysis revealed that 61 protein spots showed 1.5-fold change in protein abundance after Ni exposure as compared to that of corresponding spots in control. Out of the 61 differentially expressed protein spots, 37 protein spots were ambiguously identified by matrix assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS). The majority of these identified proteins were found to be involved in sulphur metabolism, protection against oxidative stress, clearly indicated that heavy metal sequestration and antioxidant system were activated by Ni treatment. The induced expression of photosynthesis and ATP generation-related proteins were also observed in plants exposed to metals, suggesting the tolerance and accumulation is an energy-demanding process. The identification of these proteins in response to Ni can lead a deep understanding of heavy metal accumulation and tolerance in B. juncea.  相似文献   

3.
In the present study an arsenite, As(III), tolerating bacterium, MR4, was isolated from Mulla River Pune, India, capable of reducing arsenate to arsenite and identified as Klebsiella pneumoniae (HQ857583). Comparative proteomic analysis using two-dimensional gel electrophoresis (2-DGE) and matrix assisted laser desorption ionization-time of flight-time of flight (MALDI-TOF/TOF) was used to monitor the proteins undergoing changes in expression levels under 2.5 mM As(III) stress. The 2-DGE proteome map has shown that 60 proteins were differentially expressed under As(III) stress, of which 39 proteins were successfully identified with a MASCOT score greater than 70 (p<0.05). Among the identified proteins, membrane transport/binding proteins, porins, and amino acid metabolism enzymes were down-regulated while stress responsive proteins and antioxidant enzymes were up-regulated. Proteins involved in carbohydrate metabolism, particularly those in pentose phosphate pathway were also up-regulated while those involved in pyruvate metabolism were down-regulated. However, proteins involved in glycolysis and tricarboxylic acid cycle showed a mixed regulation response. These findings provide new insights into the probable mechanisms by which K. pneumoniae (HQ857583) could be adapting to As(III) stress.  相似文献   

4.
以生长于广西大厂锡多金属矿上部(重金属胁迫区)和未受矿化或污染影响的矿区外围(对照区)的芒萁〔Dicranopteris pedata(Houtt.)Nakaike〕为实验材料,对芒萁叶片进行转录组高通量测序,并对组装得到的unigenes经NCBI官方非冗余蛋白质序列数据库(Nr)、NCBI官方非冗余核苷酸序列数据库(Nt)、KEGG直系同源数据库(KO)、Swiss-Prot数据库(Swiss-Prot)、蛋白质家族数据库(Pfam)、基因功能分类体系数据库(GO)和真核生物直系同源序列数据库(KOG)进行注释,同时分析重金属胁迫区和对照区芒萁叶片间的差异表达unigenes.结果显示:测序获得19.56 Gb clean data,其中,重金属胁迫区和对照区芒萁叶片分别含10.14和9.42 Gb clean data.组装得到的250582个unigenes中有120097个unigenes得到注释,占unigenes总数的47.93%.与对照区相比较,重金属胁迫区芒萁叶片中上调和下调差异表达unigenes分别有208和620个,其中120个上调差异表达unigenes注释为代谢过程,占所有上调差异表达unigenes的57.69%;285个下调差异表达unigenes注释为催化活性,占所有下调差异表达unigenes的45.97%.重金属胁迫区芒萁叶片中15个unigenes与重金属转运和耐受相关,其中c44988 g1和c84121 g1的相对表达量分别极显著和显著高于对照区.研究结果显示:芒萁响应自然金属矿化或矿山重金属污染的基因可以用于生物地球化学找矿和土壤重金属污染检测.  相似文献   

5.
6.
Arteries undergo remodeling as a consequence of increased wall stress during hypertension. However, the molecular mechanisms of the vascular remodeling are largely unknown. Proteomics is a powerful tool to screen for differentially expressed proteins, but little effort was made on vascular disease research, especially on hypertension. In the present study, the differentially expressed proteins in aortas from 18-week-old spontaneously hypertensive rats (SHR) and their normotensive counterpart, Wistar Kyoto rats (WKY), were examined by two-dimensional electrophoresis (2-DE). We found 50 proteins to be differentially expressed, among which 27 were highly or only expressed in SHR and 23 in WKY. Using matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF-MS) and online data search, nine proteins, including Rho GDP dissociation inhibitor alpha (RhoGDIalpha), were identified with high confidence. Further, the upregulation of RhoGDIalpha was verified at both mRNA and protein level in SHR. In addition, when cultured vascular smooth muscle cells (VSMCs) from aortas of SHR and WKY were treated with angiotensin II (Ang II) and antagonist of angiotensin II type I (AT(1)) receptor, L158809, respectively, RhoGDIalpha was upregulated by Ang II and downregulated by L158809 in VSMCs of SHR. These results demonstrate that vascular remodeling results in significant alterations in the protein expression profile of the aorta during hypertension and suggest that the upregulation of RhoGDIalpha in hypertension is induced by Ang II via AT(1) receptor.  相似文献   

7.
Henschke P  Vorum H  Honoré B  Rice GE 《Proteomics》2006,6(6):1957-1962
The aim of this study was to test the hypothesis that acute in vitro exposure of prematurely delivered fetal rabbit lungs to hyperoxic conditions will induce the expression of an adaptive cassette of proteins that mediates antioxidant and inflammatory processes. To test this hypothesis, ex situ fetal rabbit lung explants were prepared from New Zealand white rabbits delivered by cesarean section on day 29 of gestation and incubated under air (21% O2; 5% CO2) or hyperoxic (95% O2; 5% CO2) atmospheres. Total tissue protein was extracted following incubation and subjected to 2-DE. Using this technique, 1500-2000 protein spots were resolved per gel. Treatment-dependent, differentially expressed proteins were identified by image analysis (Melanie II) and MALDI-TOF MS and MALDI-MS/MS. The analysis identified 12 protein spots that were differentially expressed by 1.5-fold or more (p<0.05) by exposure to hyperoxic conditions. Six of these differentially expressed proteins were identified as vimentin, annexin I, inorganic pyrophosphatase, prohibitin, an N-terminal fragment of ATP synthase and heat shock protein 27. The data obtained are consistent with the roles of these proteins in mediating cellular response to oxidative stress and in regulating cell proliferation.  相似文献   

8.
【目的】研究锌离子缺乏对肺炎链球菌的影响,找到其适应性生长机制。【方法】以肺炎链球菌为模型,利用加锌和不加锌的培养基对细菌进行培养,收集细胞蛋白,采用双向凝胶电泳,结合金属亲和层析和质谱技术鉴定差异表达蛋白,进而通过生物信息学分析蛋白质相互关系,从中找到细菌适应锌离子匮乏条件的关键代谢通路和蛋白。【结果】测定了在限制培养条件下肺炎链球菌的最适生长浓度,建立了锌离子调控蛋白双向凝胶电泳图谱,鉴定到了96个差异表达蛋白斑点,共67个差异蛋白,其中32个表达下调,35个表达上调,锌离子调控蛋白的作用可能主要体现在糖代谢、核酸代谢、氧化还原作用、辅助蛋白质翻译、合成及折叠等方面。建立了锌结合蛋白的差异表达图谱,鉴定到了10个差异表达蛋白斑点,共7个差异蛋白,其中1个表达下调,6个表达上调。锌离子结合蛋白的作用可能主要体现在应对压力、蛋白质折叠和转运、氨基酸代谢等方面。【结论】肺炎链球菌主要通过调控碳水化合物代谢和核酸代谢等多个代谢通路来应对宿主锌金属离子匮乏的环境,从而使自身能够存活并对宿主形成感染。本研究为揭示细菌在宿主环境,特别是金属离子匮乏条件下的适应性生长机制提供理论基础。  相似文献   

9.
It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.  相似文献   

10.
Abiotic stresses adversely affect the agricultural productivity worldwide. Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a legume crop that can tolerate severe adverse environmental conditions such as drought, salinity and heavy metal contamination. As a first step towards characterization of genes that contribute to combating abiotic stresses, construction and analysis of subtracted cDNA library is reported here. Using this strategy a total of 1050 ESTs were isolated, sequenced, 959 high quality ESTs were obtained and clustered. Further, our analysis revealed that of these 531 sequences are unique and 30% of these have no homology to known proteins in the database. This observation has great relevance since horsegram is a stress-adapted legume crop. Further, to validate the identified differentially expressed genes, expression profiles of selected clones were analyzed using reverse-northern, northern blot analysis and we show that indeed these clones are differentially expressed under various abiotic stress conditions. The implications of the analyzed genes in abiotic stress tolerance also discussed.  相似文献   

11.
The heavy metal ATPase(HMA)subfamily is mainly involved in heavy metal(HM)tolerance and transport in plants,but an understanding of the definite roles and mechanisms of most HMA members are still limited.In the present study,we identified 14 candidate HMA genes named BrrHMAl—BrrHMA8 from the turnip genome and analyzed the phylogeny,gene structure,chromosome distribution,and conserved domains and motifs of HMAs in turnip(Brassica rapa var.rapa).According to our phylogenetic tree,the BrrHMAs are divided into a Zn/Cd/Co/Pb subclass and Cu/Ag subclass.The BrrHMA members show similar structural characteristics within subclasses.To explore the roles of BrrHMAs in turnip,we compared the gene sequences and expression patterns of the BrrHMA genes between a Cd-tolerant landrace and a Cd-sensitive landrace.Most BrrHMA genes showed similar spatial expression patterns in both Cd-tolerant and Cd-sensitive turnip landraces;some BrrHMA genes,however,were differentially expressed in specific tissue in Cd-tolerant and Cd-sensitive turnip.Specifically,BrrHMA genes in the Zn/Cd/Co/Pb subclass shared the same coding sequence but were differentially expressed in Cd-tolerant and Cd-sensitive turnip landraces under Cd stress.Our findings suggest that the stable expression and up-regulated expression of BrrHMA Zn/Cd/Co/Pb subclass genes under Cd stress may contribute to the higher Cd tolerance of turnip landraces.  相似文献   

12.
We have recently identified and classified a cystathionine ??-synthase domain containing protein family in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.). Based on the microarray and MPSS data, we have suggested their involvement in stress tolerance. In this study, we have characterized a rice protein of unknown function, OsCBSX4. This gene was found to be upregulated under high salinity, heavy metal, and oxidative stresses at seedling stage. Transgenic tobacco plants overexpressing OsCBSX4 exhibited improved tolerance toward salinity, heavy metal, and oxidative stress. This enhanced stress tolerance in transgenic plants could directly be correlated with higher accumulation of OsCBSX4 protein. Transgenic plants could grow and set seeds under continuous presence of 150?mM NaCl. The total seed yield in WT plants was reduced by 80%, while in transgenic plants, it was reduced only by 15?C17%. The transgenic plants accumulated less Na+, especially in seeds and maintained higher net photosynthesis rate and Fv/Fm than WT plants under NaCl stress. Transgenic seedlings also accumulated significantly less H2O2 as compared to WT under salinity, heavy metal, and oxidative stress. OsCBSX4 overexpressing transgenic plants exhibit higher abiotic stress tolerance than WT plants suggesting its role in abiotic stress tolerance in plants.  相似文献   

13.
Rhizobium leguminosarum bv. viciae strains expressing different degrees of tolerance to metal stress were used in this work to study the basic mechanisms underlying heavy metal tolerance. We used various parameters to evaluate this response. The strains' growth responses under different Cd2+ concentrations were determined and we reported variation in Cd2+ tolerance. Total soluble protein content decreased drastically, revealing the toxic effects that intracellular Cd2+ imposes on cellular metabolism, but this decrease in protein content was particularly evident in sensitive and moderately tolerant strains. Tolerant strains presented the highest intracellular and wall-bound Cd2+ concentrations. Cd2+ induced increases in the expression of some specific proteins, which were identical in all tolerant strains. Glutathione levels remained unaltered in the sensitive strain and increased significantly in tolerant and moderately tolerant strains, suggesting the importance of glutathione in coping with metal stress. This work suggests that efflux mechanisms may not be the only system responsible for dealing with heavy metal tolerance. A clear correlation between glutathione levels and Cd2+ tolerance is reported, thus adding a novel aspect in bacteria protection against heavy metal deleterious effects.  相似文献   

14.
Pseudomonas putida (NBAII-RPF9) was identified as an abiotic stress tolerant bacterium capable of growing at 45 °C as well as in 1 M NaCl. The proteins expressed by this bacterium when subjected to these two stresses were analyzed by 2D gel and MALDI-TOF/MS. Two parameters viz., heat/saline shock (20 min at 45 °C/1 M solid NaCl added at mid log phase and incubated for 1 h) and heat/saline tolerance (24 h growth at 45 °C/in 1 M NaCl) were studied. Under heat shock 13 upregulated proteins and 1 downregulated protein were identified and under tolerance 6 upregulated proteins were identified. GroES and GroEL proteins were expressed under both tolerance and shock. Under saline shock 11 upregulated proteins were identified whereas under saline tolerance 6 upregulated proteins were identified and all these proteins had pI between 3 and 10 with molecular weights ranging from 14.3 to 97 kDa. Aspartate carbamoyltransferase was common under both the saline conditions studied. The analysis revealed involvement of heat stress responsive molecular chaperones and membrane proteins during heat stress. During salt stress, proteins involved in metabolic processes were found to be upregulated to favor growth and adaptation of the bacterium. Heat shock chaperones viz., DnaK and DnaJ were expressed under both saline and heat stress. This is the first report of protein profile obtained from a single bacterium under saline and heat stress and the studies reveal the complex mechanisms adapted by the organism to survive under high temperature or saline conditions.  相似文献   

15.
Zhang Y  Zhang YL  Feng C  Wu YT  Liu AX  Sheng JZ  Cai J  Huang HF 《Proteomics》2008,8(20):4344-4356
The aim of this study was to use proteomics-based approach to examine differences in protein expression in placenta derived from assisted reproductive technology (ART) and normal pregnancy. Using 2-DE we found that, compared with the control group, 12 spots in standard in vitro fertilization group and 18 spots in intracytoplasmic sperm injection group were identified as significantly differentially expressed proteins. Among them, six spots were differentially expressed in both standard IVF and ICSI groups with the same change tendency. Totally, 20 proteins were successfully identified by MALDI TOF/TOF MS, including proteins involved in the membrane traffic, metabolism, nucleic acid processing, stress response and cytoskeleton. Notably, five proteins detected to be differentially expressed in both ART groups were identified as annexin A3, hnRNP C1/C2, alpha-SNAP, FTL and ATP5A. Some of the proteins were confirmed by Western blot and immunohistochemistry analysis. Our study allowed for the initial identification of these proteins related to various functions in placentation with significantly altered abundance in ART groups. The present results reveal that abnormal protein profiles are involved in ART placenta and these differentially expressed proteins may be valuable for the evaluation of potential association between ART treatment and offspring outcome.  相似文献   

16.
Chrysanthemum is one of the most important ornamental flowers in the world, and temperature has a significant influence on its field production. In the present study, differentially expressed proteins were investigated in the leaves of Dendranthema grandiflorum ‘Jinba’ under high temperature stress using label-free quantitative proteomics techniques. The expressed proteins were comparatively identified and analyzed. A total of 1,463 heat-related, differentially expressed proteins were successfully identified by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS), and 1,463 heat-related, differentially expressed proteins were successfully identified by mass spectrometry after a high temperature treatment. Among these, 701 proteins were upregulated and 762 proteins were downregulated. The in-depth bioinformatics analysis of these differentially expressed proteins revealed that these were involved in energy metabolism pathways, protein metabolism, and heat shock. In the present study, the investigators determined the changes in the levels of some proteins, and their expression at the protein and molecular levels in chrysanthemum to help reveal the mechanism of heat resistance in chrysanthemum. Furthermore, the present study elucidated some of the proteins correlated to heat resistance in chrysanthemum, and their expression changes at the protein and molecular levels to help reveal the mechanism of heat resistance in this flower species. These results provide a theoretical basis for the selection of new heat resistant varieties of chrysanthemum in the field.  相似文献   

17.
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt‐stress‐tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3‐O‐methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.  相似文献   

18.
19.
Galactinol synthase (GolS, EC 2.4.1.123), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), plays roles in plant growth and developmental processes. The in vitro roles of GolS in plant responses against heavy metal stress are not well clarified. In the present study, a suppression-subtractive hybridization (SSH) cDNA library has been constructed using RNA extracted from wheat cultivar Jinan 18 treated with ZnCl2 as the tester and RNA from untreated seedlings as the driver. Sixteen expressed sequence tags (ESTs) highly homologous with known proteins associated with stress tolerance have been obtained. Among these, a 1000-bp cDNA sequence encoding GolS protein has been isolated and designated as TaGolS3. Real-time quantitative PCR (qPCR) analysis revealed that TaGolS3 was mainly expressed in young roots and upregulated by exogenous ABA treatment and several abiotic stresses, such as ZnCl2, CuCl2, low temperature, and NaCl. Subcellular localization analysis showed that TaGolS3 protein is a nuclear-localized protein. A detailed analysis of Arabidopsis and rice transgenic plants overexpressing TaGolS3 gene displayed that transgenic plants exhibited increased lateral root number, primary root length, plant survival rate, and plant height. Moreover, in comparison with the wild-type (WT) plants, the TaGolS3-overexpressing lines showed a higher expression of ROS-scavenging genes, activities of antioxidative enzymes, proline contents, and a lower level of malondialdehyde (MDA) contents and electrolyte leakage under zinc stress. These results confirmed the positive roles of TaGolS3 in improving plant tolerance to heavy metal stress, indicating a potential resource in the transgenic breeding to enhance heavy metal stress tolerance in crop plants.  相似文献   

20.
  • Arbuscular mycorrhizal fungi (AMF) is an effective way to remove heavy metals’ inhibition on plants, however, few relevant research attempts have been made to determine the contribution of AMF to the physiological and biochemical changes related to the enhanced copper tolerance of Phragmites australis under metal‐stressed conditions.
  • In this study, the effects of AMF inoculation on P. australis under different concentrations of copper stress were investigated according to the changes in the parameters related to growth and development, and photosynthetic charateristics. Then, differentially expressed proteins (DEPs) were evaluated by the Isobaric Tag for Relative and Absolute Quantification (iTRAQ) system, which could accurately quantify the DEPs by measuring peak intensities of reporter ions in tandem mass spectrometry (MS/MS) spectra.
  • It was found that AMF inoculation may relieve the photosynthesis inhibition caused by copper stress on P. australis and thus promote growth. Proteomic analysis results showed that under copper stress, the inoculation of R. irregularis resulted in a total of 459 differently‐expressed proteins (200 up‐regulated and 259 down‐regulated) in root buds. In addition, the photosynthetic changes caused by AMF inoculation mainly involve the up‐regulated expression of transmembrane protein–pigment complexes CP43 (photosystem II) and FNR (ferredoxin‐NADP+ oxidoreductase related to photosynthetic electron transport).
  • These results indicate that AMF could effectively improve the growth and physiological activity of P. australis under copper stress, and thus provides a new direction and instructive evidence for determining the mechanisms by which AMF inoculation enhances the copper tolerance of plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号