首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immobilized yeast cells in agar gel beads were used in a packed bed reactor for the production of ethanol from cane molasses at 30°C, pH 4.5. The maximum productivity, 79.5g ethanol/l.h was obtained with 195g/l reducing sugar as feed. Substrate (64.2%) was utilized at a dilution of 1.33h-1. The immobilized cell reactor was operated continuously at a constant dilution rate of 0.67h-1 for 100 days. The maximum specific ethanol productivity and specific sugar uptake rate were 0.610g ethanol/g cell.h and 1.275g sugar/g cell.h, respectively.  相似文献   

2.
Continuous ethanol production in a one-stage continuous stirred tank fermentor without recycle was carried out using a yeast strain Saccharomyces cerevisiae. Different dilution rates were used. Cell and ethanol concentrations in the culture medium decreased with increasing dilution rates, and the maximum value of 3.0 g l−1h−1was found at a dilution rate of 0.340 h−1. Specific ethanol productivities increased as dilution rates were increased, and the highest value appeared at about the same dilution rate as that for the maximum fermentor productivity. A material balance equation, which relates total amount of spent medium to cell synsthesis, ethanol production, and overall maintenance, was introduced. The cellular yield and overall maintenance coefficients increased with increasing dilution rates. The fraction of limiting substrate utilized for overall maintenance, which includes the limiting substrate spent for purposes other than cell synthesis and ethanol production, decreased with increasing dilution rates. The non-product associated substrate utilization can be minimized if correct dilution rate is chosen.  相似文献   

3.
The one-parameter-tanks-in-series model was found to be an adequate model for the characterization of flow dynamics in a horizontal immobilized cell reactor, when blue dextran was used as tracer. Isobutanol proved to be inadequate, because it diffused inside the beads and thus caused tailing in RTD. The CO2 evolution rate displayed the most pronounced effect on axial liquid dispersion. At high CO2 production rates and low dilution rates each stage of the reactor behaved like a well-mixed reactor. At lower CO2 evolution rates the number of tanks (N) related to the reactor increased up to 10. The medium flow rate affects axial dispersion to a minor degree. An increase of the dilution rate from 0.328 to 1.34 h?1 resulted in a slight rise of N from 3.5 to 5 at high CO2 production and from 4 to 7 at medium CO2 production rates. Variation in the bead hold up showed the same characteristic axial mixing behavior as reflected by changing the medium flow rate. The quantitative correlation between axial mixing and the most significant fermentation parameters (dilution rate, CO2 evolution rate and bead hold up) allow to develop an overall model, which besides kinetic expressions also contains terms related to the flow dynamics of the reactor. In the third part of this communication such a model will be presented and compared with actual fermentation data.  相似文献   

4.
In batch cultures of Petunia hybrida cv. Rosy Morn Fertile. one respiratory peak is usually observed shortly after subculturing. However, two types of peak respiration could be distinguished, one connected with the dilution process and one with sugar addition at low biomass concentrations. The dilution peak was observed when cells were diluted in medium without sugar, in the presence or absence of mannitol. The sugar peak occurred only after previous dilution of the cells and not when sugar is added at high biomass concentrations Apparently the existence of a dilute suspension is a prerequisite for the induction of the peak. The presence of sugar is not a prerequisite for the increased respiratory activity but it is necessary lor growth: however, growth is possible without the increase in respiration, as was shown by the addition of sugar to a culture with a high biomass concentration. The peak caused by dilution either in the presence or absence of sugar showed no significant differences in height. The height of the peak caused by sugar addition to a previously diluted cell suspension was correlated with the sugar concentration. The respiratory peak disappeared long before the end of the growth period; this decline of the respiratory rates was not connected to sugar or oxygen limitation. In a continuous culture of Petunia hybrida growing at low biomass concentration, the respiration was always at the high level as observed during the peak of batch culture. Growing at lower biomass concentrations might be more expensive for plant cell suspensions.  相似文献   

5.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

6.
The production of streptokinase in a batch fermentation has been analysed for the role of incomplete macromixing of the broth. The analysis is based on a kinetic model exhibiting inhibition by the substrate and a primary metabolite (lactic acid), and a mixing model comprising two continuous flow reactors (CFRs) with closed-loop recycle. The inoculum is introduced into one region (one CFR) and the mixing process determines its distribution, growth and reactivity. By varying the dilution rates of the CFRs, any degree of macromixing can be simulated. For dilution rates larger than 1.0 h?1 almost complete macromixing is achieved, for which an analogy has been drawn with micromixing. Increasing the volume of the inoculated region relative to the noninoculated region improves the maximum attainable activity of streptokinase and shortens the time for this. In such a situation an imperfectly mixed bioreactor is superior to a perfectly mixed one, implying that good productivity requires a large inoculated region and incomplete macromixing. These inferences are supported by earlier studies of fluid mixing and relaxation times in bioreactors.  相似文献   

7.
Amino acid consumption was studied with batch and continuous chemostat cultures of Chloroflexus aurantiacus grown phototrophically in complex medium with casamino acids (Pierson and Castenholz 1974). Amino acids like Arg, Asx, Thr, Ala, Tyr, which were utilized during the early exponential phase by cells grown in batch cultures were consumed in chemostat cultures essentially at any of the dilution rates employed (0.018–0.104 h-1). Those amino acids which were taken up during subsequent phases of growth were consumed in chemostat cultures preferentially at low dilution rates. For example, the consumption of Glx was enhanced during the late exponential phase and at low dilution rates. At high dilution rates Glx was not consumed at all. Since Glx utilization largely paralleled bacteriochlorophyll formation, it is discussed that formation of the photopigment depends on the intracellular availability of Glu as the exclusive precursor for tetrapyrrole synthesis.  相似文献   

8.
Temperature and pH had only a slight effect on the astaxanthin content of a Phaffia rhodozyma mutant, but influenced the maximum specific growth rate and cell yield profoundly. The optimum conditions for astaxanthin production were 22°C at pH 5.0 with a low concentration of carbon source. Astaxanthin production was growth-associated, and the volumetric astaxanthin concentration gradually decreased after depletion of the carbon source. The biomass concentration decreased rapidly during the stationary growth phase with a concomitant increase in the cellular content of astaxanthin. Sucrose hydrolysis exceeded the assimilation rates of D-glucose and D-fructose and these sugars accumulated during batch cultivation. D-Glucose initially delayed D-fructose uptake, but D-fructose utilization commenced before glucose depletion. In continuous culture, the highest astaxanthin content was obtained at the lowest dilution rate of 0.043 h–1. The cell yield reached a maximum of 0.48 g cells·g–1 glucose utilized between dilution rates of 0.05 h–1 and 0.07 h–1 and decreased markedly at higher dilution rates. Correspondence to: J. C. Du Preez  相似文献   

9.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1.  相似文献   

10.
Exponentially fed-batch cultures (EFBC) of a murine hybridoma in T-flasks were explored as a simple alternative experimental tool to chemostats for the study of metabolism, growth and monoclonal antibody (MAb) production kinetics. EFBC were operated in the variable volume mode using an exponentially increasing and predetermined stepwise feeding profile of fresh complete medium. The dynamic and steady-state behaviors of the EFBC coincided with those reported for chemostats at dilution rates below the maximum growth rate. In particular, steady-state for growth rate and concentration of viable cells, glucose, and lactate was attained at different dilution rates between 0.005 and 0.05 h–1. For such a range, the glucose and lactate metabolic quotients and the steady-state glucose concentration increased, whereas total MAb, volumetric, and specific MAb production rates decreased 65-, 6-, and 3-fold, respectively, with increasing dilution rates. The lactate from glucose yield remained relatively constant for dilution rates up to 0.03 h–1, where it started to decrease. In contrast, viability remained above 80% at high dilution rates but rapidly decreased at dilution rates below 0.02 h–1. No true washout occurred during operation above the maximum growth, as concluded from the constant viable cell number. However, growth rate decreased to as low as 0.01 h–1, suggesting the requirement of a minimum cell density, and concomitant autocrine growth factors, for growth. Chemostat operation drawbacks were avoided by EFBC in T-flasks. Namely, simple and stable operation was obtained at dilution rates ranging from very low to above the maximum growth rate. Furthermore, simultaneous operation of multiple experiments in reduced size was possible, minimizing start-up time, media and equipment costs.Abbreviations EFBC exponentially-fed batch culture - CSC continuous suspended culture - MAb monoclonal antibody - D dilution rate - q i metabolic quotient or specific rate of consumption or production of i  相似文献   

11.
The fission yeast Schizosaccharomyces pombe was cultivated in a chemostat at dilution rates of D = 0.03, 0.05, 0.10, and 0.20 h(-1). After steady state had been reached, the amount of dry matter, number of cells, concentration of residual sugar, yield coefficient (Y), and some morphological properties of the cells were estimated. Curves reflecting the dry mass, number of cells, and cell mean volume show a changing coordination between the growth rate and the rate of cell division, with respect to D. In addition, it could be concluded that in dividing cells the cell septum is localized asymmetrically; Two nonidentical cells differing both in length and volume result. The degree of asymmetry is a function of the dilution rate.  相似文献   

12.
A clonal derivative of a transfectant of the SP2/0 myeloma cell line producing a chimeric monoclonal antibody was cultivated in both continuous open and continuous partially-closed bioreactors. Using an open system for the determination of kinetic parameters, we showed that the production of this chimeric mAb was growth associated. As such, the volumetric productivity increased linearly with increasing dilution rate up to the maximum dilution rate. Three continuous cultivations employing partial cell retention were conducted. In agreement with mathematical predictions, the product titer and volumetric productivity were independent of the degree of cell retention when the total dilution was held constant. When cells were maintained at a low specific growth rate, the product titer was independent of dilution rate and the volumetric productivity increased with increasing dilution rate, again in agreement with mathematical predictions. Since the partially-closed bioreactor could be operated at dilution rates in excess of the maximum specific cellular growth rate, volumetric productivities were greater than those achievable in the open bioreactor. However, when cells were maintained at a high specific growth rate, cell accumulation was limited and product titers decreased at high dilution rates. Therefore, the volumetric productivity in this latter case did not increase at higher dilution rates.  相似文献   

13.
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium''s maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.  相似文献   

14.
AIM: The aim of this work was to construct a Zymomonas mobilis mutant capable of simultaneous ethanol and ice nuclei production from agricultural by-product such as sugar beet molasses, in steady-state continuous culture. METHODS AND RESULTS: A sucrose-hypertolerant mutant of Z. mobilis strain CP4, named suc40, capable of growing on 40% (w/v) sucrose medium was isolated following N-methyl-N'-nitro-N-nitrosoguanidine treatment. Plasmid pDS3154 carrying the inaZ gene of Pseudomonas syringae was conjugally transferred and expressed in suc40. The potential for simultaneous ethanol and bacterial ice nuclei production was assessed in steady-state continuous cultures over a range of dilution rates from 0.04 to 0.13 h(-1). In addition, the fatty acid and phospholipid profile of the three strains was also investigated. Ethanol production up to 43 g l(-1) was achieved at dilution rates below 0.10 h(-1) in sugar beet molasses. Ice nucleation activity gradually increased with increasing dilution rate and the greatest activity, -3.4 log (ice nuclei per cell), was observed at the highest dilution rate (0.13 h(-1)). Both mutant strains displayed a different fatty acid and phospholipid profile compared with the wild-type strain. CONCLUSIONS: The ability of the mutant and recombinant plasmid-containing strains to grow on high sugar concentrations and in high osmotic pressure environments (molasses) can be attributed to their phospholipid and fatty acid contents. SIGNIFICANCE AND IMPACT OF THE STUDY: Taking into account that sugar beet molasses is a low cost agricultural by-product, the simultaneous ethanol and bacterial ice nucleation production achieved under the studied conditions is considered very promising for industrial applications.  相似文献   

15.
The steady-state residual glucose concentrations in aerobic chemostat cultures of Saccharomyces cerevisiae ATCC 4126, grown in a complex medium, increased sharply in the respiro-fermentative region, suggesting a large increase in the apparent ks value. By contrast, strain CBS 8066 exhibited much lower steady-state residual glucose concentrations in this region. Glucose transport assays were conducted with these strains to determine the relationship between transport kinetics and sugar assimilation. With strain CBS 8066, a high-affinity glucose uptake system was evident up to a dilution rate of 0.41 h–1, with a low-affinity uptake system and high residual glucose levels only evident at the higher dilution rates. With strain ATCC 4126, the high-affinity uptake system was present up to a dilution rate of about 0.38 h–1, but a low-affinity uptake system was discerned already from a dilution rate of 0.27 h–1, which coincided with the sharp increase in the residual glucose concentration. Neither of the above yeast strains had an absolute vitamin requirement for aerobic growth. Nevertheless, in the same medium supplemented with vitamins, no low-affinity uptake system was evident in cells of strain ATCC 4126 even at high dilution rates and the steady-state residual glucose concentration was much lower. The shift in the relative proportions of the high and low-affinity uptake systems of strain ATCC 4126, which might have been mediated by an inositol deficiency through its effect on the cell membrane, may offer an explanation for the unusually high steady-state residual glucose concentrations observed at dilution rates above 52% of the wash-out dilution rate.  相似文献   

16.
Summary The actinomycete Thermomonospora fusca KW 3 produced novel thermostable xylanases in batch and continuous cultures in media containing insoluble xylan. The production of xylanases could be induced with oat spelt or beech xylan. Very low activities were detected when the strain was grown on glucose or xylose. In continuous cultivations, mycelial wall growth could be prevented using a stirrer speed controller. Homogeneous mixing of the insoluble substrate was obtained by vibrating the flexible tubes. T. fusca KW 3 could be grown on insoluble xylan at growth rates as high as 0.23 h–1, equivalent to a doubling time of 3 h. Xylanase activity decreased from maximum levels of 2.5 units (U) ml–1 with increasing dilution rate and was nearly constant at a level of 0.5 U ml–1 with dilution rates greater than 0.1 h–1. Correspondence to: P. Röthlisberger  相似文献   

17.
Degnan BA  Macfarlane GT 《Anaerobe》1995,1(2):103-112
Studies showed that the plant cell wall polysaccharide arabinogalactan supported growth of Bifidobacterium longum in batch culture. Galactose was also utilized, but not arabinose, the other major constituent sugar of the polymer. Enzymes required for hydrolysis of arabinogalactan ('arabinogalactanase', alpha-arabinopyranosidase, beta-galactosidase) were inducible and cell-associated in B. longum, and their expression was repressed by glucose. Considerable amounts of alpha-arabinopyranosidase and beta-galactosidase were synthesized during growth on arabinogalactan, but only low levels of arabinogalactanase were detected. B. longum only grew on arabinogalactan in continuous culture under putative carbon-excess conditions. In C-limited chemostats, the bifidobacterium could not establish unless Bacteroides thetaiotaomicron was present in co-culture. The relationship between the two organisms was not simply commensal; at low specific growth rates, bacteroides cell population densities were approximately 30% lower than those recorded in axenic culture, indicating the existence of competitive interactions with the bifidobacterium. In contrast, at high specific growth rates, a mutualistic association was observed, in that Bact. thetaiotaomicron was maintained in the chemostats at high dilution rates if bifidobacteria were also present. Measurements of residual carbohydrate in spent culture fluid from C-limited chemostats indicated that a large part of the arabinogalactan molecule could not be broken down by either B. longum or Bact. thetaiotaomicron alone, or in co-culture. Formate and acetate were the major fermentation products of B. longum cultured in the presence of high concentrations of arabinogalactan, confirming that these bacteria were growing under energy-limited conditions.  相似文献   

18.
The kinetic behavior of heterogeneous microbial populations of sewage origin was studied in a single-stage, isothermal, continuous flow, completely mixed aeration tank. A series of experiments were carried out at various dilutions rates using glucose as the limiting substrate. The cell dry weight and substrate concentration in terms of chemical oxygen demand (COD) were continuously monitored. The results indicate that reproducible steady-state conditions can generally be obtained; however, multiple steady states were observed at dilution rates near washout. At low dilution rates (below about 0.1 hr?1) the contribution of microorganism decay became appreciable. Using the multiresponse data of cell dry weight and COD, the parameter values in various existing growth models were estimated. The analyses of variance and residuals revealed that models proposed by Moser, Monod, and Contois, each with a decay term added, were significantly better than the other models which were tested.  相似文献   

19.
The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086 h?1 with an initial cell mass of less than 0.6 OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9 OD600 or higher, or at low dilution rates (<0.05 h?1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron‐supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6 h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron‐limited chemostat cultures was observed compared to iron‐supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955–964. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Aerobic glucose-limited chemostat cultivations were conducted with Saccharomyces cerevisiae strains NRRL Y132, ATCC 4126 and CBS 8066, using a complex medium. At low dilution rates all three strains utilised glucose oxidatively with high biomass yield coefficients, no ethanol production and very low steady-state residual glucose concentrations in the culture. Above a threshold dilution rate, respiro-fermentative (oxido-reductive) metabolism commenced, with simultaneous respiration and fermentation occurring, which is typical of Crabtree-positive yeasts. However, at high dilution rates the three strains responded differently. At high dilution rates S. cerevisiae CBS 8066 produced 7–8 g ethanol L−1 from 20 g glucose L−1 with concomitant low levels of residual glucose, which increased markedly only close to the wash-out dilution rate. By contrast, in the respiro-fermentative region both S. cerevisiae ATCC 4126 and NRRL Y132 produced much lower levels of ethanol (3–4 g L−1) than S. cerevisiae CBS 8066, concomitant with very high residual sugar concentrations, which was a significant deviation from Monod kinetics and appeared to be associated either with high growth rates or with a fermentative (or respiro-fermentative) metabolism. Supplementation of the cultures with inorganic or organic nutrients failed to improve ethanol production or glucose assimilation. Journal of Industrial Microbiology & Biotechnology (2000) 24, 231–236. Received 09 August 1999/ Accepted in revised form 18 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号