首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional wisdom holds that the circadian pacemaker of rodents and humans is minimally responsive to light of the intensity provided by dim moonlight and starlight. However, dim illumination (<0.005 lux) provided during the daily dark periods markedly alters entrainment in hamsters. Under dimly lit scotophases, compared to completely dark ones phases, the upper range of entrainment is increased by ~4 h, and re‐entrainment is accelerated following transfer from long to short day lengths. Moreover, the incidence of bimodal entrainment to 24 h light:dark:light:dark cycles is increased fourfold. Notably, the nocturnal illumination inducing these pronounced effects is equivalent in photic energy to that of a 2 sec, 100 lux light pulse. These effects may be parsimoniously interpreted as an action of dim light on the phase relations between multiple oscillators comprising the circadian pacemaker. An action of dim light distinct from that underlying bright‐light phase‐resetting may promote more effective entrainment. Together, the present results refute the view that scotopic illumination is environmental “noise” and indicate that clock function is conspicuously altered by nighttime illumination like that experienced under dim moonlight and starlight. We interpret our results as evidence for a novel action of dim light on the coupling of multiple circadian oscillators.  相似文献   

2.
《Chronobiology international》2013,30(6):1001-1017
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60‐liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free‐running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free‐running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

3.
4.
5.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L?=?20 lux, D =?0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period (~24?h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46?±?0.41?h (mean?±?SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52?±?0.70?h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24?h. (Author correspondence: )  相似文献   

6.
The two-oscillator model of human circadian rhythmicity was analyzed when a zeitgeber relative intensity of 1, 0.5, or 0.1 was introduced into the equations. Fourier analysis was compared with dynamic analysis such as attractor reconstruction or Liapunov exponent calculation. After a 50 or 90% reduction in zeitgeber intensity, the dynamics of the system became equivalent and differed significantly from those of a system with maximal zeitgeber intensity. When 10% aleatory noise was added to the data, the analysis was still applicable, and the results obtained were essentially the same as in the absence of noise. Dynamic analysis could thus provide a distinct classification for periodic data, based on the type of analysis.  相似文献   

7.
In a total of 12 adult Colombian owl monkeys, Aotus lemurinus griseimembra, the significance of nonparametric light effects for the entrainment of the circadian system by light-dark (LD) cycles was studied by carrying out (a) phase-response experiments testing the phase-shifting effect of 30-min light pulses (LPs) of 250 lx applied at various phases of the free-running circadian activity rhythm (LL 0.2 lx) and (b) synchronization experiments testing the entraining effect of 24-h single LP photoperiods consisting of 30-min L of 80 lx and 23.5-h D of 0.5 lx (sP 0.5) and skeleton photoperiods consisting of two 30-min LPs of 80 lx, given against a background illuminance of 0.5 lx either symmetrically at 12-h intervals (PP 12:12) or asymmetrically at 9- and 15-h intervals (PP 9:15). The phase-response characteristics in Aotus, as evidenced by the phase-response curve, generally correspond to those of nocturnal rodents, proving that this neotropical simian primate chronobiologically is a genuine nocturnal species. When free-running with a spontaneous period close to 24 h (24.3 ± 0.1 h), the PP 12:12 produced entrainment in only two of five owl monkeys, whereas the sP 0.5 entrained four of them. The PP 9:15, however, brought about stable entrainment of the circadian rhythms of locomotor activity, feeding activity, and core temperature in all animals tested (n = 8). Changes in phase position of the activity time with the endogenous rhythm entrained by a PP 12:12, by an sP 0.5, or by a PP 9:15 give evidence that both LPs of a skeleton photoperiod contribute to the phase setting of the circadian system. When free-running with a considerably lengthened spontaneous period (τ ≥ 25.5 h), even the sP 0.5 and the PP 9:15 failed to entrain the owl monkeys' circadian rhythms, whereas a 24-h photoperiod with a very long LP of 3 h caused entrainment. The results indicate that in Aotus lemurinus griseimembra, in addition to the nonparametric light effects, parametric light effects play a significant role in the entrainment of circadian rhythms by LD cycles.  相似文献   

8.
The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, “full” and “skeleton” photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological disturbances. (Author correspondence: )  相似文献   

9.
The sensitivity of the circadian photoreceptors mediating entrainment of the eclosion rhythm and phase shifts of oviposition rhythm of the high altitude (HA) strain of Drosophila ananassae originating from Badrinath (5123 m above sea level) in the Himalayas was compared with the low altitude (LA) strain from Firozpur (179 m above sea level). Reduced photic sensitivity of the HA strain is regarded as the result of natural selection, which led to the weakening of the coupling mechanism between the circadian pacemaker and light at the high altitude of origin. The present study was designed to determine whether or not the photic entrainment of the oviposition rhythm of the HA strain of D. ananassae is also altered by the high altitude of its origin, and the results are compared with those of the LA strain. The effects of light intensity on the phase angle difference (Ψ), degree of rhythmicity (R), the percent oviposition in photophase, the threshold light intensity (i.e., the intensity at which stable entrainment occurred), and the saturation light intensity (i.e., the intensity beyond which the values of Ψ or amplitude of rhythm remained unaltered) were determined. Entrainment was studied in light–dark cycles in which the light intensity of 12 h of photophase varied from 1 to 1000 lux, and complete darkness prevailed in all scotophases. The oviposition rhythm of the HA strain was arrhythmic from 1 to 90 lux, weakly rhythmic at 95 lux, but rhythmic at or above 100 lux, while that of the LA strain was weakly rhythmic at 1 lux but rhythmic at or above 2 lux. Oviposition of the HA strain occurred mostly in the photophase, while that of the LA strain occurred in the scotophase; as a result, the oviposition medians of the HA strain were around the subjective forenoons while those of the LA strain were around the subjective evenings. The percent of oviposition in photophase increased from 68 to 98 in the HA strain and from 5 to 33 in the LA strain as light intensity increased from 1 to 1000 lux. In the HA strain, the Ψ values were significantly less and values of R and percent oviposition in photophase were significantly more than those of the LA strain at each level of light intensity. Threshold and saturation intensities for Ψ were 100 and 700 lux, respectively, for the HA strain, but just 2 and 45 lux, respectively, for the LA strain. The saturation intensity for R was 650 and 700 lux for the HA and LA strains, respectively. These results extend the confirmation that the reduced photic sensitivity of the HA strain might have been acquired through natural selection in response to environmental conditions at the high altitude of its origin.  相似文献   

10.
Entrainment to light of circadian activity rhythms in tench (Tinca tinca)   总被引:1,自引:0,他引:1  
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

11.
This clinical methods comparison study describes the difference between light levels measured at the wrist (Actiwatch-L) and at the eye (Daysimeter) in a postoperative in-patient population. The mean difference between the two devices was less than 10 lux at light levels less than 5000 lux. Agreement between the devices was found to decrease as eye-level light exposure increased. Measurements at eye level of 5000 lux or more corresponded to a difference between the devices of greater than 100 lux. Agreement between the eye- and wrist-level light measurements also appears to be influenced by time of day. During the day, the measurement differences were on average 50 lux higher at eye level, whereas at night they were on average 50 lux lower. Although the wrist-level monitor was found to underestimate light exposure at higher light levels, it was well tolerated by participants in the clinical setting. In contrast, the eye-level monitor was cumbersome and uncomfortable for the patients to wear. This study provides light-exposure data on patients in real conditions in the clinical environment. The results show that wrist-level monitoring provides an adequate estimate of light exposure for in-hospital circadian studies. (Author correspondence: )  相似文献   

12.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12?h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as “evolved emergence waveforms” (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day. (Author correspondence: or )  相似文献   

13.
入侵种喜旱莲子草对光照强度的表型可塑性反应   总被引:9,自引:0,他引:9  
对外来人侵种喜旱莲子草[Alternanthera philoxeroides(Mart.)Griseb.]在不同强度光照处理中的表型可塑性反应进行了研究。结果表明:在高光照(100%)、中等光照(60.4%)、低光照(35.4%)和弱光照(16.5%)条件下,随光照强度的降低,分枝强度、基株株长、茎节长度随之下降,总生物量及根、茎、叶生物量显著减少;中等光强度处理喜旱莲子草根冠比显著低于其他处理;弱光条件下喜旱莲子草生长迟缓,呈直立状。研究结果表明,光照强度是影响喜旱莲子草种群生存与维持、生长和成功入侵、扩散的重要因子,同时也说明光照强度较低的生态系统喜旱莲子草入侵成功的机会很小。  相似文献   

14.
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20°C and 26°C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20°C than at 26°C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20°C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (τ=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5°C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free‐running rhythms (τ=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.  相似文献   

15.
Djungarian hamsters (Phodopus sungorus) bred at the Institute of Halle reveal three different circadian phenotypes. The wild type (WT) shows normal locomotor activity patterns, whereas in hamsters of the DAO (delayed activity onset) type, the activity onset is continuously delayed. Since the activity offset in those hamsters remains coupled to “light-on,” the activity time becomes compressed. Hamsters of the AR (arrhythmic) type are episodically active throughout the 24?h. Previous studies showed that a disturbed interaction of the circadian system with the light-dark (LD) cycle contributes to the phenomenon observed in DAO hamsters. To gain better insight into the underlying mechanisms, the authors investigated the daily melatonin rhythm, as it is a reliable marker of the circadian clock. Hamsters were kept individually under standardized laboratory conditions (LD 14:10, T?=?22°C?±?2°C, food and water ad libitum). WT, DAO (with exactly 5?h delay of activity onset), and AR hamsters were used for pineal melatonin and urinary 6-sulfatoxymelatonin (aMT6s) measurement. Pineal melatonin content was determined at 3 time points: 4?h after “light-off” [D?+?4], 1?h before “light-on” [L???1], and 1?h after “light-on” [L?+?1]). The 24-h profile of melatonin secretion was investigated by transferring the animals to metabolic cages for 27?h to collect urine at 3-h intervals for aMT6s analysis. WT hamsters showed high pineal melatonin content during the dark time (D?+?4, L???1), which significantly decreased at the beginning of the light period (L?+?1). In contrast, DAO hamsters displayed low melatonin levels during the part of the dark period when animals were still resting (D?+?4). At the end of the dark period (L???1), melatonin content increased significantly and declined again when light was switched on (L?+?1). AR hamsters showed low melatonin levels, comparable to daytime values, at all 3 time points. The results were confirmed by aMT6s data. WT hamsters showed a marked circadian pattern of aMT6s excretion. The concentration started to increase 3?h after “light-off” and reached daytime values 5?h after “light-on.” In DAO hamsters, in contrast, aMT6s excretion started about 6?h later and reached significantly lower levels compared to WT hamsters. In AR animals, aMT6s excretion was low at all times. The results clearly indicate the rhythm of melatonin secretion in DAO hamsters is delayed in accord with their delayed activity onset, whereas AR hamsters display no melatonin rhythm at all. Since the regulatory pathways for the rhythms of locomotor activity and melatonin synthesis (which are downstream from the suprachiasmatic nucleus [SCN]) are different but obviously convey the same signal, we conclude that the origin of the phenomenon observed in DAO hamsters must be located upstream of the SCN, or in the SCN itself. (Author correspondence: )  相似文献   

16.
17.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

18.
The environmental day-night cycle provides the principal synchronizing signal for behavioral activity in most mammals. Light information is relayed to the master circadian pacemaker, the suprachiasmatic nucleus (SCN), via synaptic transmission from the retina directly to the SCN, where a predominately glutamate-driven cellular signaling pathway is able to reset biochemical, physiological, and behavioral activities. In the present study, we aimed to decipher the key roles played by protein kinase C (PKC) in regulating light-induced behavioral resetting under both a temporal and intensity-dependent manner; in addition, we also investigate PKC contributions to advancing and delaying re-entrainment paradigms. Our findings show that during the early night PKC acts in a temporal manner, where PKC inhibition selectively attenuates light-induced behavioral resetting in response to subsaturating and saturating light intensities. Declines in light response were also evident upon PKC inhibition during the late night, but restricted to bright light stimuli. The positive regulatory actions of PKC were further demonstrated in response to an 8-h delayed re-entrainment paradigm where inhibition of PKC resulted in slower re-entrainment. Further, analysis of both classic and novel PKC isozymes present within the SCN showed significant circadian variation in the mRNA expression of PKCα, indicating possible isozyme-specific mediators in photic signaling. Our data provide evidence of a PKC contribution to both acute light-induced clock resetting, which is intensity and time of day dependent, and a functional role in circadian photoentrainment. (Author correspondence: )  相似文献   

19.
The rising and setting of the sun marks a transition between starkly contrasting environmental conditions for vegetative life. Given these differing diurnal and nocturnal environmental factors and the inherent regularity of the transition between the two, it is perhaps unsurprising that plants have developed an internal timing mechanism (known as a circadian clock) to allow modulation of gene expression and metabolism in response to external cues. Entrainment of the circadian clock, primarily via the detection of changes in light and temperature, maintains synchronization between the surrounding environment and the endogenous clock mechanism. In this review, recent advances in our understanding of the molecular workings of the plant circadian clock are discussed as are the input pathways necessary for entrainment of the clock machinery.  相似文献   

20.
Circadian rhythms of plasma insulin, Cortisol, and glucose concentrations were examined in scotosensitive (reproductively sensitive to inhibitory effects of short daylengths) and scotorefractory male and female Syrian hamsters (Mesocricetus auratus) maintained on short (LD 10:14) and long (LD 14:10) daylengths. The baseline concentration (mean of all values obtained every 4 hr six times of day) of insulin was much greater in female than in male scotosensitive hamsters kept on short daylengths. These differences in insulin concentration may account for the observed heavy fat stores in female and low fat stores in male scotosensitive hamsters kept on short daylengths. The baseline concentrations of Cortisol were approximately equal in both scotosensitive and scotorefractory males held on short and long daylengths, but were relatively low in females held on short daylengths and especially high in scotorefractory females held on long daylengths.

The plasma concentrations of both cortisol and insulin varied throughout the day in many of the groups tested. However, the variations were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylength. Peak concentrations generally occurred about 12 hr after light onset. In contrast, the circadian variations of insulin differed markedly. For example in male hamsters, robust daily variations were found in scotosensitive hamsters held on short daylengths but not on long daylengths and in scotorefractory hamsters held on long daylengths but not on short daylengths. Furthermore, the daily peak occurred during the light in the scotosensitive hamsters and during the dark in the scotorefractory animals. Neither the daily feeding pattern (about 60% consumed during dark) nor the daily variations of glucose concentration varied appreciably with seasonal condition or daylength. They do not appear to determine nor directly reflect the variations in cortisol and glucose concentrations. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号