首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
In some long-lived organisms, particularly in tropical birds and migrants that spend part of the year close to the equator, endogenous circannual rhythms have been demonstrated in seasonal events like reproduction, molt, and migration. These, like the circadian rhythms, are expressed only in constant conditions of illumination with a periodicity deviating from 1 yr. If birds followed this periodicity, they would soon be out of phase with the annual calendar and perish and, therefore, they would need to be synchronized. However, almost nothing is known as to how synchronization is achieved in birds. Herein, with the help of a suitable model, viz., the tropical spotted munia and long-term experiments conducted in series over a 5-yr period, we provide direct evidence for the first time indicating that the segment of annual photocycle with maximal rate of increase prior to vernal equinox (approximately between mid-February and mid-March) synchronizes the circannual reproductive cycle with the monsoon period of ample food supply through a phase delay. Data also indicate, contrary to the prevalent view, that birds in the tropics can perceive minor changes in day-length, that birds respond to progressive changes in day-length as distinct from responding to fixed photoperiods of particular durations, and that birds can actually distinguish the quality of the environmental signal, viz., vernal equinox from early spring, or increasing days of spring from decreasing days of autumn. The underlying mechanisms, although yet to be identified, appear to involve a gonado-inhibitory rather than the conventional gonado-stimulatory response to increasing day-length. The photoperiodic responses of spotted munia are distinctly different from that of any “long-day” birds described thus far and do not conform to the prevalent “circadian coincidence” hypothesis of photoperiodism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号