首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general procedure is described for separation and purification of oligodeoxynucleotides of identical length but different base composition, in particular, of oligomers containing modified bases such as 4-substituted thymines and 6-substituted guanines, using an anion-exchange column (either Mono Q or NucleoPac). The modified oligomers can be well separated from the analogous oligomers containing unmodified thymine or guanine under the basic conditions of the chromatography. The effects of oligomer length, base composition, and lipophilicity on the separation are discussed. A general rule which can be used for prediction of the order of elution of different oligomers and for estimation of tautomeric form of a modified base in the oligomer is presented.  相似文献   

2.
Jain S  Udgaonkar JB 《Biochemistry》2011,50(7):1153-1161
Aggregation reactions of proteins leading to amyloid fibril formation are often characterized by early transient accumulation of a heterogeneous population of soluble oligomers differing in size and structure. Delineating the kinetic roles of the different oligomeric forms in fibril formation has been a major challenge. The aggregation of the mouse prion protein to form worm-like amyloid fibrils at low pH is known to proceed via a β-rich oligomer ensemble, which is shown here to be comprised of two subpopulations of oligomers that differ in size and internal structure. The relative populations of the two oligomers can be tuned by varying the concentration of NaCl present. By demonstrating that the apparent rate constant for the formation of fibrils is dependent linearly on the concentration of the larger oligomer and is independent of the concentration of the smaller oligomer, we show that the larger oligomer is a productive intermediate that accumulates on the direct pathway of aggregation from monomer to worm-like fibrils. The smaller oligomer is shown to be populated off the pathway of the larger oligomer and, hence, is not directly productive for fibril formation. The relative populations of the two oligomers can also be tuned by single-amino acid residue changes in the sequence of the protein. The different protein variants yield worm-like fibrils of different lengths, and the apparent rate of formation of the fibrils by the mutant variants is also shown to be dependent on the concentration of the larger but not of the smaller oligomer formed.  相似文献   

3.
4.
The enzyme exonuclease I from Escherichia coli hydrolyzes successive nucleotides from the 3'-termini of single-stranded deoxyribonucleotide homopolymers. When the reaction is stopped after partial hydrolysis, only intact starting material and small oligomers can be isolated. The distribution of oligomeric products varies with the base composition of the polymer but the largest oligomer that can be isolated from the reaction of exonuclease I with homopolymers of deoxyadenylate, deoxythymidylate, or deoxycytidylate is a decamer. These results suggest a model in which exonuclease I possesses at least two nucleotide binding sites. When both sites are filled, with 11-mers and longer polymers, the enzyme does not dissociate from the polymer during hydrolysis. When, with smaller oligomers, only a single site is filled, the reaction partitions at each oligomer between hydrolysis and dissociation. The kinetics of the reactions of exonuclease I with purified polydeoxyriboadenylates of defined size distributions have been investigated. The maximum rates of hydrolysis are nearly independent of polymer size while the apparent Michaelis constants are inversely proportional to the polymer size. A simple steady state model yields a kinetic equation that is consistent with our results. Competition experiments indicate that the rate at which exonuclease I associates with the 3'-terminus of a polydeoxyribonucleotide is independent of the polymer's chain length.  相似文献   

5.
An efficient procedure is described for synthesizing deoxyribonucleoside methylphosphonates on polystyrene polymer supports which involves condensing 5'-dimethoxytrityldeoxynucleoside 3'-methylphosphonates. The oligomers are removed from the support and the base protecting groups hydrolyzed by treatment with ethylenediamine in ethanol, which avoids hydrolysis of the methylphosphonate linkages. Two types of oligomers were synthesized: those containing only methylphosphonate linkages, d-Np(Np)nN, and those which terminate with a 5' nucleotide residue, dNp (Np)nN. The latter oligomers can be phosphorylated by polynucleotide kinase, and are separated by polyacrylamide gel electrophoresis according to their chain length. Piperdine randomly cleaves the oligomer methylphosphonate linkages and generates a series of shorter oligomers whose number corresponds to the length of the original oligomer. Apurinic sites introduced by acid treatment spontaneously hydrolyze to give oligomers which terminate with free 3' and 5' OH groups. These reactions may be used to characterize the oligomers.  相似文献   

6.
Understanding how amyloid-β peptide interacts with living cells on a molecular level is critical to development of targeted treatments for Alzheimer's disease. Evidence that oligomeric Aβ interacts with neuronal cell membranes has been provided, but the mechanism by which membrane binding occurs and the exact stoichiometry of the neurotoxic aggregates remain elusive. Physiologically relevant experimentation is hindered by the high Aβ concentrations required for most biochemical analyses, the metastable nature of Aβ aggregates, and the complex variety of Aβ species present under physiological conditions. Here we use single molecule microscopy to overcome these challenges, presenting direct optical evidence that small Aβ(1-40) oligomers bind to living neuroblastoma cells at physiological Aβ concentrations. Single particle fluorescence intensity measurements indicate that cell-bound Aβ species range in size from monomers to hexamers and greater, with the majority of bound oligomers falling in the dimer-to-tetramer range. Furthermore, while low-molecular weight oligomeric species do form in solution, the membrane-bound oligomer size distribution is shifted towards larger aggregates, indicating either that bound Aβ oligomers can rapidly increase in size or that these oligomers cluster at specific sites on the membrane. Calcium indicator studies demonstrate that small oligomer binding at physiological concentrations induces only mild, sporadic calcium leakage. These findings support the hypothesis that small oligomers are the primary Aβ species that interact with neurons at physiological concentrations.  相似文献   

7.
Amyloid- (A) oligomers play a crucial role in Alzheimer’s disease due to their neurotoxic aggregation properties. Fibrillar A oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel -sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A monomers. From that, we propose the following growth mechanism from A oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.  相似文献   

8.
The small protein barstar aggregates at low pH to form soluble oligomers, which can be transformed into fibrillar aggregates at an elevated temperature. To characterize structurally, with residue-specific resolution, the process of amyloid formation of barstar, as well as to monitor the increase in size that accompanies the aggregation process, time-resolved fluorescence anisotropy decay measurements have been introduced as a valuable probe. Seven different single-cysteine-containing mutant forms of barstar were made, to each of which a fluorophore was attached at the thiol group. The rotational dynamics of these seven fluorophores, as well as of the sole intrinsic tryptophan residue in the protein, were determined in the amyloid protofibrils formed, as well as in the soluble oligomers from which the protofibrils arise upon heating. Mapping of the fast rotational dynamics onto the sequence of the protein yields dynamic amplitude maps that allowed identification of the segments of the chain that possess local structure in the soluble oligomer and amyloid protofibrils. The patterns of these maps of the soluble oligomer and protofibrils are seen to be similar; and protofibrils display more local structure than do the soluble oligomers, at all residue positions studied. The observation that transformation from soluble oligomers to protofibrils does not perturb local structure significantly at eight different residue positions, suggests that the soluble oligomers transform directly into protofibrils, without undergoing drastic structural rearrangements.  相似文献   

9.
A method for separation and quantitation of galacturonic acid oligomers from 3 to over 25 residues in length is described. Oligomers were labeled at the reducing end with 2-aminopyridine and then analyzed by anion-exchange high-performance liquid chromatography using a sodium acetate gradient. The amount of each oligogalacturonide present was determined by comparison to the response of an internal reference oligogalacturonide over a range from 0.5 to 20 nmol per oligomer. At least 5 h of incubation in the 2-aminopyridine reagent was required to obtain maximum and oligomer length-independent derivatization. To be analyzed using this technique, oligogalacturonides must possess a reducing terminus, they should be deesterified prior to derivatization if identification of the actual galacturonide chain length is desired, and they should fall within the range of 3 to over 25 galacturonide residues per oligomer. The wide range of oligogalacturonides separable, sensitivity of detection, ease of quantitation of chromatographic data, and ability to hydrolyze the 2-aminopyridinyl group from sugars makes this technique of potential use for numerous applications ranging from simple characterization of oligogalacturonide mixtures to purification of oligomers for use in bioassays.  相似文献   

10.
Polymerization on the Rocks: Theoretical Introduction   总被引:3,自引:3,他引:0  
It is difficult if not impossible to synthesize long polymers of amino acids, nucleotides, etc., in homogeneous aqueous solution. We suggest that long polymers were synthesized on the surface of minerals in a prebiotic process analogous to solid-phase synthesis. Provided that the affinity of a mineral for an oligomer increases with the length of the oligomer, adsorption must become essentially irreversible for sufficiently long oligomers. Irreversibly adsorbed oligomers may be elongated indefinitely by repeated cycles in which the mineral with its adsorbed oligomers is first incubated with activated monomers and then washed free of deactivated monomer and side-products. We discuss in some detail the formation of oligomers of negatively-charged amino acids such as glutamic acid on anion-exchange minerals such as hydroxylapatite or illite. We show that the average length of adsorbed oligomers at steady state, n, depends on the balance between the rate of chain elongation and the rate of hydrolysis, and we derive a very approximate formula for n.  相似文献   

11.
M van Heel  E V Orlova  P Dube    P Tavares 《The EMBO journal》1996,15(18):4785-4788
Large cyclical oligomers may be formed by (curvi-) linear polymerization of monomers until the n(th) monomer locks in with the first member of the chain. The subunits in incomplete structures exhibit a natural curvature with respect to each other which can be perturbed when the oligomer closes cyclically. Using cryo-electron microscopy and multivariate statistical image processing we report herein a direct structural observation of this effect. A sub-population (approximately 15%) of incomplete oligomers was found within a sample of SPP1 bacteriophage portal proteins embedded in vitreous ice. Whereas the curvature between adjacent subunits of the closed circular 13-fold symmetric oligomer is 27.7 degrees, in these incomplete oligomers the angle is only 25.8 degrees, a value which almost allows for a 14-subunit cyclical arrangement. A simple model for the association of large cyclical oligomers is suggested by our data.  相似文献   

12.
The bacterial cell division protein FtsZ from Escherichia coli has been purified with a new calcium precipitation method. The protein contains one GDP and one Mg(2+) bound, it shows GTPase activity, and requires GTP and Mg(2+) to polymerize into long thin filaments at pH 6.5. FtsZ, with moderate ionic strength and low Mg(2+) concentrations, at pH 7.5, is a compact and globular monomer. Mg(2+) induces FtsZ self-association into oligomers, which has been studied by sedimentation equilibrium over a wide range of Mg(2+) and FtsZ concentrations. The oligomer formation mechanism is best described as an indefinite self-association, with binding of an additional Mg(2+) for each FtsZ monomer added to the growing oligomer, and a slight gradual decrease of the affinity of addition of a protomer with increasing oligomer size. The sedimentation velocity of FtsZ oligomer populations is compatible with a linear single-stranded arrangement of FtsZ monomers and a spacing of 4 nm. It is proposed that these FtsZ oligomers and the polymers formed under assembly conditions share a similar axial interaction between monomers (like in the case of tubulin, the eukaryotic homolog of FtsZ). Similar mechanisms may apply to FtsZ assembly in vivo, but additional factors, such as macromolecular crowding, nucleoid occlusion, or specific interactions with other cellular components active in septation have to be invoked to explain FtsZ assembly into a division ring.  相似文献   

13.
Abstract

Coupling of phosphorous acid in automated DNA synthesis using H-phosphonate methodology leads to 5′-5′ linked dimers and 5′-H-phosphonates. The yield is dependent on the phosphorous acid concentration, chain length of the oligomer, and pore size of the support. 5′-Phosphate oligomers are obtained from the H-phosphonate oligomers by silylation and oxidation.  相似文献   

14.
Amyloid diseases are traditionally characterized by the appearance of inter- and intracellular fibrillar protein deposits, termed amyloid. Historically, these deposits have been thought to be the etiology of the disease. However, recent evidence suggests that small oligomers of the amyloidogenic protein/peptide are the origin of neurotoxicity. Although the importance of identifying the toxic oligomeric species is widely recognized, such identification is challenging because these oligomers are metastable, occur at low concentration, and are characterized by a high degree of heterogeneity. In this work, a fluorescently labeled β-amyloid(1-40) is used as a model amyloidogenic peptide to test the effectiveness of what we believe is a novel approach based on single-molecule spectroscopy. We find that by directly counting the photobleaching steps in the fluorescence, we can determine the number of subunits in individual β-amyloid(1-40) oligomers, which allows us to easily distinguish among different species in the mixtures. The results are further analyzed by comparison with Monte Carlo simulations to show that the variability seen in the size of photobleaching steps can be explained by assuming random dipole orientations for the chromophores in a given oligomer. In addition, by accounting for bias in the oligomer size distribution due to the need to subtract background noise, we can make the results more quantitative. Although the oligomer size determined in this work is limited to only small species, our single-molecule results are in good quantitative agreement with high-performance liquid chromatography gel filtration data and demonstrate that single-molecule spectroscopy can provide useful insights into the issues of heterogeneity and ultimately cellular toxicity in the study of amyloid diseases.  相似文献   

15.
The aggregation of the beta-amyloid protein (Abeta) is an important step in the pathogenesis of Alzheimer's disease. There is increasing evidence that lower molecular weight oligomeric forms of Abeta may be the most toxic species in vivo. However, little is known about the structure of Abeta oligomers. In this study, scanning tunnelling microscopy (STM) was used to examine the structure of Abeta monomers, dimers and oligomers. Abeta1-40 was visualised by STM on a surface of atomically flat gold. At low concentrations (0.5 microM) small globular structures were observed. High resolution STM of these structures revealed them to be monomers of Abeta. The monomers measured approximately 3-4 nm in diameter. Internal structure was seen in many of the monomers consistent with a conformation in which the polypeptide chain is folded into 3 or 4 domains. Oligomers were seen after ageing the Abeta solution for 24 h. The oligomers were also 3-4 nm in width and appeared to be formed by the end-to-end association of monomers with the polypeptide chain oriented at 90 degrees to the axis of the oligomer. The results suggest that the oligomer formation can proceed through a mechanism involving the linear association of monomers.  相似文献   

16.
The formation of β-sheet-rich prion protein (PrP(β)) oligomers from native or cellular PrP(c) is thought to be a key step in the development of prion diseases. To assist in this characterization process we have developed a rapid and remarkably high resolution gel electrophoresis technique called RENAGE (resolution-enhanced native acidic gel electrophoresis) for separating, sizing, and quantifying oligomeric PrP(β) complexes. PrP(β) oligomers formed via either urea/salt or acid conversion can be resolved by RENAGE into a clear set of oligomeric bands differing by just one subunit. Calibration of the size of the PrP(β) oligomer bands was made possible with a cross-linked mouse PrP(90-232) ladder (1- to 11-mer) generated using ruthenium bipyridyl-based photoinduced cross-linking of unmodified proteins (PICUP). This PrP PICUP ladder allowed the size and abundance of PrP(β) oligomers formed from urea/salt and acid conversion to be determined. This distribution consists of 7-, 8-, 9-, 10-, and 11-mers, with the most abundant species being the 8-mer. The high-resolution separation afforded by RENAGE has allowed us to investigate distinctive size and population changes in PrP(β) oligomers formed under various conversion conditions, with various construct lengths, from various species or in the presence of anti-prion compounds.  相似文献   

17.
In order to investigate the role of each amino acid residue in determining the secondary structure of the transmembrane segment of membrane proteins in a lipid bilayer, we made a conformational analysis by CD for lipid-soluble homooligopeptides, benzyloxycarbonyl-(Z-) Aaan-OEt (n = 5-7), composed of Ala, Leu, Val, and Phe, in three media of trifluoroethanol, sodium dodecyl sulfaie micelle, and phospholipid liposomes. The lipid-peptide interaction was also studied through the observation of bilayer phase transition by differential scanning cahrimetry (DSC). The CD studies showed that peptides except for Phe oligomers are present as a mainly random structure in trifluoroethanol, as a mixture of α-helix, β-sheet, β-turn, and /or random in micelles above the critical micellization concentration and preferably as an extended structure of α-helical or β-structure in dipalmitoyl-D,L -α-phosphatidylcholine (DPPC) liposomes of gel state. That the β-structure content of Val oligomers in lipid bilayers is much higher than that in micelles and the oligopeptides of Leu (n = 7) and Ala (n = 6) can take an α-helical structure with one to two turns in lipid bilayers despite their short chain lengths indicates that lipid bilayers can stabilize the extended structure of both α-helical and β-structures of the peptides. The DSC study for bilayer phase transition of DPPC / peptide mixtures showed that the Leu oligomer virtually affects neither the temperature nor the enthalpy of the transition, while Val and Ala oligomers slightly reduce the transition enthalpy without altering the transition temperature. In contrast, the Phe oligomer affects the phase transition in much more complicated manner. The decreasing tendency of the transition enthalpy was more pronounced for the Ala oligomer as compared with the Leu and Val oligomers, which means that the isopropyl group of the side chain has a less perturbing effect on the lipid acyl chain than the methyl group of Ala. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Antisense oligodeoxyribonucleoside methylphosphonates targeted against various regions of mRNA or precursor mRNA are selective inhibitors of mRNA expression both in cell-free systems and in cells in culture. The efficiency with which methylphosphonate oligomers interact with mRNA, and thus inhibit translation, can be considerably increased by introducing photoactivatable psoralen derivatives capable of cross-linking with the mRNA. Oligonucleoside methylphosphonates complementary to coding regions of rabbit alpha- or beta-globin mRNA were derivatized with 4'-(aminoalkyl)-4,5',8-trimethylpsoralens by attaching the psoralen group to the 5' end of the oligomer via a nuclease-resistant phosphoramidate linkage. The distance between the psoralen group and the 5' end of the oligomer can be adjusted by changing the number of methylene groups in the aminoalkyl linker arm. The psoralen-derivatized oligomers specifically cross-link to their complementary sequences on the targeted mRNA. For example, an oligomer complementary to nucleotides 56-67 of alpha-globin mRNA specifically cross-linked to alpha-globin mRNA upon irradiation of a solution of the oligomer and rabbit globin mRNA at 4 degrees C. Oligomers derivatized with 4'-[[N-(2-amino-ethyl)amino]methyl]-4,5',8-trimethylpsoralen gave the highest extent of cross-linking to mRNA. The extent of cross-linking was also determined by the chain length of the oligomer and the structure of the oligomer binding site. Oligomers complementary to regions of mRNA that are sensitive to hydrolysis by single-strand-specific nucleases cross-linked to an approximately 10-30-fold greater extent than oligomers complementary to regions that are insensitive to nuclease hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Injectable thermoplastic oligomers represent a promising biomaterial for drug delivery provided they possess a melting point at or very near physiologic temperature, as well as a low melt viscosity. One approach would be to prepare an oligolactone. In this paper, we examine the role of different alcohol initiators used in the ring-opening polymerization of epsilon-caprolactone oligomers on the melting point and melt viscosity of the resultant thermoplastics. We found that the initiator used plays a significant role in the final properties of the final oligomer. For primary alcohols, the longer the chain length of the oligomer the lower its melt viscosity, until a chain length of 8 carbons, after which there was no noticeable effect. There was no significant effect observed of primary initiators on the melting point. The use of secondary alcohols produced oligomers with higher viscosities but with reduced overall crystallinity. The use of an unsaturated alcohol, oleyl alcohol, not only reduced the melting point and overall crystallinity but also reduced the melt viscosity of the oligomer. The oleyl alcohol initiated oligomer appears to be a promising vehicle for localized, sustained drug delivery applications.  相似文献   

20.
The synthesis of the model compound Aloc-Ala-Ala-Dma-Ala-Ala-OMe has been described as an illustration of the fact that a large group reversibly alkylating the amido group of an oligomer can disturb the regularity of a peptide backbone, oppose its aggregation and thus enhance its solubility greatly, affording synthons for further oligomerization. Application of such a group not only affects the solubility, but alters also the properties of the intermediates. The concomitant change in reactivity may run to such an extent that N-alkylation of oligomers has to be abandoned (this was encountered in the attempted synthesis of Lys-Glu-Dmg). Consequently, the solubility of the growing protected peptide chain will become progressively less and in the mentioned example the oligomerization had to be terminated at the dodecapeptide level, indicating the severe need for reversible "structure-breaking" functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号