首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the renaturation of Escherichia coli DNA in 0.4-1.0m-sodium chloride at temperatures from 60 degrees to 90 degrees have been studied. The extent of renaturation was a maximum at 65 degrees to 75 degrees and increased with ionic strength, and the rate constant increased with both ionic strength and temperature. The energy and entropy of activation of renaturation were calculated to be 6-7kcal.mole(-1) and -40cal.deg.(-1)mole(-1) respectively. It has been shown that renaturation is a second-order process for 5hr. under most conditions. The results are consistent with a reaction in which the rate-controlling step is the diffusion together of two separated complementary DNA strands and the formation of a nucleus of base pairs between them. The kinetics of the renaturation of T7-phage DNA and Bordetella pertussis DNA have also been studied, and their rates of renaturation related quantitatively to the relative heterogeneity of the DNA samples. By analysis of the spectra of DNA at different stages during renaturation it was shown that initially the renatured DNA was rich in guanine-cytosine base pairs and non-random in base sequence, but that, as equilibrium was approached, the renatured DNA gradually resembled native DNA more closely. The rate constant for the renaturation of guanine-cytosine base pairs was slightly higher than for adenine-thymine base pairs.  相似文献   

2.
The thermal stability and renaturation kinetics of DNA have been studied as a function of dimethyl sulfoxide (DMSO) concentration. Increasing the concentration of DMSO lowers the melting temperature of DNA but results in an increased second-order renaturation rate. For example, in a DNA solution containing 0.20M NaCl, 0.01M Tris (pH 8.0), and 0.001M EDTA, the addition of 40% DMSO lowers the melting temperature of the DNA by 27°C and approximately doubles the optimal renaturation rate. The effect of DMSO on the renaturation rate is shown to be at least partially due to its effect on the solution dielectric constant and to be consistent with the polyelectrolyte counterion condensation theory of Manning [(1976) Biopolymers 15 , 1333–1343].  相似文献   

3.
L R Holman  D O Jordan 《Biopolymers》1972,11(8):1661-1684
DNA which has been heat denatured in the presence of Cu++ ions can be completely and rapidly renatured by increasing the ionic strength of the solution above a critical value. A kinetic study of this renaturation recation was carried out by following the associated UV absorbance change and also by following the change in free Cu++ ion concentration by means of a specific Cu++ ion activity electrode. The data obtained could be fitted to first-order kinetics for a considerable extent of the reaction and the rate constant was found to increase with temperature and ionic strength, but to decrease markedly as the bulk viscosity of the solution was increased. At temperatures greater than 5°C the reaction rate depended on the time elapsing between denaturation and the commencement of the renaturation reaction. As there was good agreement between the rate constants obtained by following the decrease in hyperchromism and by following the increase in free Cu++ ion concentration, it is concluded that under the conditions employed, the rate of renaturation is determined by the rate of release of Cu++ ions from the denatured DNA-Cu++ complex.  相似文献   

4.
Renaturation of denatured, covalently closed circular DNA   总被引:2,自引:0,他引:2  
The rate of renaturation of denatured, covalently closed, circular DNA (form Id DNA) of the phi X174 replicative form has been investigated as a function of pH, temperature, and ionic strength. The rate at a constant temperature is a sharply peaked function of pH in the range of pH 9 to 12. The position on the pH scale of the maximum rate decreases as the temperature is increased and as the ionic strength is increased. The kinetic course of renaturation is pseudo-first order: it is independent of DNA concentration, but falls off in rate from a first order relationship as the reaction proceeds. The rate of renaturation depends critically on the temperature at which the denaturation is carried out. Form Id, prepared at an alkaline pH at 0 degrees C, renatures from 5 to more than 100 times more rapidly than that similarly prepared at 50 degrees C. Both the heterogeneity in rate and the effect of the temperature of denaturation depend, in part, on the degree of supercoiling of the form I DNA from which the form Id is prepared. However, it is concluded that a much larger contribution to both arises from a configurational heterogeneity introduced in the denaturation reaction. The renaturation rate was determined by neutralization of the alkaline reaction and analytical ultracentrifugal analysis of the amounts of forms I and Id. The nature of the proximate renatured species at the temperature and alkaline pH of renaturation was investigated by spectrophotometric titration and analytical ultracentrifugation. It is concluded that the proximate species are the same as the intermediate species defined by an alkaline sedimentation titration of the kind first done by Vinograd et al. ((1965) Proc. Natl. Acad. Sci. U. S. A. 53, 1104-1111). Observations are included on the buoyant density of form Id and on depurination of DNA at alkaline pH values and high temperatures.  相似文献   

5.
The kinetics of the binding reaction of MS2 phage to free F pili, which were highly purified from Escherichia coli, has been studied using a membrane filter assay. The rate of dissociation (kd) of the MS2-phage--F-pilus complex is very slow and follows first-order kinetics with a half-life of 4.2 h at 30 degrees C in the standard buffer. The dissociation rate is rather insensitive to temperature, but becomes more rapid at high ionic strength or at basic pH. In a 0.25 M ionic strength buffer, the half-life of the complex is about 1.0 min. The rate of association is very fast and follows second-order kinetics with the rate constant for association (ka) being 8 x 10(7) M-1 s-1 at 30 degrees C in the standard buffer. The rate of association is almost insensitive to ionic strength but slightly sensitive to pH or temperature. Monovalent cations can also promote the binding reaction as well as divalent cations but the complex formed with monovalent cation is unstable. A study of the kinetics of dissociation suggests that there are two types of interaction between MS2 phage and F pilus; one is a strong interaction formed with divalent cations and the other is a weak one formed with monovalent cations. The physical nature of the bonds involved in the former and the latter seems to be mainly electrostatic and non-electrostatic respectively. The mechanism of the binding reaction is discussed.  相似文献   

6.
The kinetics of DNA helix-coil subtransitions   总被引:2,自引:0,他引:2  
The kinetic analysis of individual helix-coil subtransitions were performed by comparing melting and renaturation profiles obtained at different temperature change rates. The duration of the three transition stages and its dependence on temperature and ionic strength were determined for a T7 phage DNA fragment. The obtained temperature dependence of the melting time for a stretch flanked by melted regions is in quantitative agreement with that predicted by the theory of slow processes (V.V. Anshelevich, A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, Biopolymers 23, 39 (1984)). The reasons are discussed for the increasing relaxation time of this stretch in the middle of its transition with decreasing ionic strength. The zipping kinetics of a melted region under essentially nonequilibrium conditions was examined for T7 fragment and pAO3 DNAs. The obtained temperature dependence of the zipping time is in quantitative agreement with calculations based on the theory of slow processes. The renaturation times of stretches flanked by helical regions proved fairly small even at a low ionic strength. These times are several orders of magnitude smaller than the renaturation times of the same stretches with one helical boundary. A formal application of the theory of slow processes failed to account for the small renaturation times of stretches that are zipped from both ends. This is probably due to the non-allowance for the changing entropy of the loop linking two helix-coil boundaries migrating towards each other. Slow processes have been revealed in the intramolecular melting of Col E1 DNA at a high ionic strength. The reason for the long relaxation time of one subtransition is the large size of the loop that separates the melting stretch from the helical part of the molecule. This result can be accounted for by the theory of slow processes.  相似文献   

7.
8.
Addition of the intercalating dye ethidium bromide (EtdBr) to a solution of alkali-denatured double-stranded closed circular PM2, ΦX174, or λb2b5c phage DNAs, under conditions such that the solution remains strongly alkaline, can result in the renaturation of up to 100% of the DNA upon neutralization of the solution. For a fixed time of incubation of the alkaline dye-containing solution before neutralization, there exists a minimum concentration of the dye below which no EtdBr-mediated renaturation is observed for each species of closed circular DNA examined. These minimum concentrations increase, for a given DNA, with increasing ionic strength and temperature. The kinetics of accumulation of forms renaturing upon neutralization of alkaline solutions, at fixed concentrations of dye and DNA, are dependent upon the molecular weight and superhelix density of the starting DNA. After extended periods of incubation at a fixed ionic strength and temperature, however, the profiles of percentage of DNA renatured as a function of ethidium concentration become very similar for all the closed circular DNAs tested and display a transition from an absence of dye-mediated renaturation to virtually 100% renaturation upon neutralization over a small range of dye concentration. Circular DNA containing one or more strand scissions remains strand-separated under all the conditions used to effect the renaturation of closed circular DNA. These findings indicate that configurations of closed circular DNA, in which at least some of the complementary bases are apposed, can be selectively stabilized and accumulate in the presence of ethidium in solutions containing 0.19 N hydroxide ion.  相似文献   

9.
Abstract

The kinetic analysis of individual helix-coil subtransitions was performed by comparing melting and renaturation profiles obtained at different temperature change rates. The duration of the three transition stages and its dependence on temperature and ionic strength were determined for a T7 phage DNA fragment. The obtained temperature dependence of the melting time for a stretch flanked by melted regions is in quantitative agreement with that predicted by the theory of slow processes (V.V. Anshelevich, A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, Biopolymers 23, 39 (1984)). The reasons are discussed for the increasing relaxation time of this stretch in the middle of its transition with decreasing ionic strength.

The zipping kinetics of a melted region under essentially nonequilibrium conditions was examined for T7 fragment and pAO3 DNAs. The obtained temperature dependence of the zipping time is in quantitative agreement with calculations based on the theory of slow processes.

The renaturation times of stretches flanked by helical regions proved fairly small even at a low ionic strength. These times are several orders of magnitude smaller than the renaturation times of the same stretches with one helical boundary. A formal application of the theory of slow processes failed to account for the small renaturation times of stretches that are zipped from both ends. This is probably due to the non-allowance for the changing entropy of the loop linking two helix-coil boundaries migrating towards each other.

Slow processes have been revealed in the intramolecular melting of Col E1 DNA at a high ionic strength. The reason for the long relaxation time of one subtransition is the large size of the loop that separates the melting stretch from the helical part of the molecule. This result can be accounted for by the theory of slow processes.  相似文献   

10.
《Carbohydrate research》1985,138(2):215-223
The kinetics of the oxidation of d-fructose with vanadium(V) in perchloric acid have been studied. The reaction is of first order with respect to the [Fructose], but the values of the rate constant increase slightly with increasing [V(V)]. In the range from 0.002–0.02m V(V), the inverse of the second-order rate constant is linearly related to the inverse of [V(V)]. Sodium hydrogensulfate and perchlorate accelerate the reaction, the effect of the former salt being greater. At a constant [H+] and ionic strength, the reaction is of first order with respect to [HSO4]. At constant ionic strength, the reaction is of third order with respect to [H+]. The activation parameters have been determined. The data obtained have been compared with those for simpler mono- and poly-hydric alcohols. A possible three-step mechanism involving CH bond fission and yielding glucosones as primary products has been suggested.  相似文献   

11.
The oxidation of cytochrome c2 by the photooxidized reaction center bacteriochlorophyll, P+-870, in chromatophores of Rhodospirillum rubrum can be described using second-order kinetics at all ionic strengths. In a system consisting of isolated R. rubrum reaction centers and purified R. rubrum cytochrome c2, the oxidation of cytochrome c2 also follows second-order kinetics. In both cases, the reaction rates at low ionic strength are weakly dependent on the ionic strength. The data suggest that the cytochrome remains mobile at very low ionic strength, since the observed kinetics can be easily explained assuming no significant tight binding of cytochrome c2 to the reaction center. In a system consisting of equine cytochrome c and reaction centers of either R. rubrum or Rhodobacter sphaeroides, the cytochrome c oxidation rate depends more strongly on the ionic strength. The high reaction rates at low ionic strength suggest that a significant portion of the cytochrome is bound. Using equine cytochrome c derivatives modified at specific lysine residues, it was shown that both R. rubrum and Rb. sphaeroides reaction centers react with equine cytochrome c through its exposed heme edge.  相似文献   

12.
A mesoscale model of DNA is presented (3SPN.1), extending the scheme previously developed by our group. Each nucleotide is mapped onto three interaction sites. Solvent is accounted for implicitly through a medium-effective dielectric constant and electrostatic interactions are treated at the level of Debye-Hückel theory. The force field includes a weak, solvent-induced attraction, which helps mediate the renaturation of DNA. Model parameterization is accomplished through replica exchange molecular dynamics simulations of short oligonucleotide sequences over a range of composition and chain length. The model describes the melting temperature of DNA as a function of composition as well as ionic strength, and is consistent with heat capacity profiles from experiments. The dependence of persistence length on ionic strength is also captured by the force field. The proposed model is used to examine the renaturation of DNA. It is found that a typical renaturation event occurs through a nucleation step, whereby an interplay between repulsive electrostatic interactions and colloidal-like attractions allows the system to undergo a series of rearrangements before complete molecular reassociation occurs.  相似文献   

13.
J A Navarro  G Cheddar  G Tollin 《Biochemistry》1989,28(14):6057-6065
We have studied the transient kinetics of electron transfer from a positively charged viologen analogue (propylene diquat), reduced by pulsed laser excitation of the deazariboflavin/EDTA system, to the net negatively charged ferredoxins from spinach and Clostridium pasteurianum. Spinach ferredoxin showed monophasic kinetics over the ionic strength range studied, consistent with the presence of only a single iron-sulfur center. Clostridium ferredoxin at low ionic strength showed biphasic kinetics, which indicates a differential reactivity of the two iron-sulfur centers of this molecule toward the electron donor. The kobsd values for the initial fast phase observed with Clostridium ferredoxin were ionic strength dependent, whereas the slow-phase kinetics were ionic strength independent. This correlates with the highly asymmetric charge distribution on the surface of the bacterial protein relative to the two iron-sulfur clusters. The kinetics corresponding to spinach ferredoxin reduction were also ionic strength dependent, and the results obtained with these kinetics and with the fast phase of the bacterial ferredoxin reduction were consistent with a mechanism involving electrostatically stabilized complex formation. For spinach ferredoxin, the second-order rate constant extrapolated to infinite ionic strength was 2-fold smaller, and the extrapolated limiting first-order rate constant was 10-fold smaller, than for Clostridium ferredoxin, indicating a smaller intrinsic reactivity of the spinach protein toward the electron donor. Differences in the rate constant values and the ionic strength dependencies with both ferredoxins are consistent with differences in cluster structure and environment and protein size and charge distribution. For both proteins, the total amount of ferredoxin reduced increased with the ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

15.
The kinetics of the interaction of Au(III) with whole yeast RNA has been studied using UV-spectrophotometry. The reaction is second order with respect to the nucleotide unit of RNA and first order with respect to Au(III) in the respective stoichiometry of 2 : 1. The effects of initial composition, temperature, ionic strength, pH and chloride ion on the kinetics have been studied. Activation energy is found to be 11.5 kcal/mol. Effect of ionic strength indicates that both the positively charged and neutral species of Au(III) take part in the rate limiting step, the former being dominant at low ionic strength. A plausible mechanism has been proposed which involves the interaction of two nucleotide units of RNA with one species of Au(III) in the rate limiting step.  相似文献   

16.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

17.
18.
An essentially new application of chronoamperometry is presented for the determination of homogeneous second-order rate constants for the reactions between small molecule reductants and redox proteins. The first part of the work is a comparison between stopped-flow kinetics and chronoamperometric kinetics for the reaction of ferrous-EDTA with horse cytochrome c. The reaction was demonstrated to be first order in both ferrous-EDTA and cytochrome c and the effect of ionic strength was also studied. All of the chronoamperometric results compared well with the stopped-flow work which had been done previously. Chronoamperometry was then used to study several other reactions which have not been previously examined, including the reaction of ferrous-diethylenetriamine pentaacetic acid with cytochrome c. The reaction was slower than the ferrous-EDTA reaction but was more sensitive to ionic strength because of the greater charge (?3) on the complex. The second study was the reaction of ferrous-EDTA with Rhodospirillum rubrum cytochrome c2 as a function of ionic strength. This novel application of chronoamperometry to small molecule-redox protein reactions represent a new and relatively easy alternative to anaerobic stopped-flow kinetics.  相似文献   

19.
The renaturation kinetics of mitochondrial DNA from the yeast Saccharomyces carlsbergensis have been studied at different temperatures and molecular weights. At renaturation temperatures 25 deg. C below the mean denaturation temperature (Tm) in 1 M-sodium chloride the renaturation rate constant is found to decrease with increasing molecular weight of the reacting strands. This unusual molecular weight dependency gradually disappears with an increase in the renaturation temperature. At a temperature 10 deg. C below the melting point, the rate constant shows the normally expected increase with the square root of the molecular weight. From the renaturation data at this temperature, the molecular weight of the mitochondrial genome is estimated to be about 5·0 × 107. The same size of genome was found from renaturation at low molecular weight and 25 deg. C below the Tm.The sedimentation properties of denatured mitochondrial DNA at pH values 7·0 to 12·5 were used to study the conformation of this DNA in 1 M-sodium chloride. The results obtained support the conclusion from the renaturation studies: that the pieces of denatured mitochondrial DNA with a molecular weight above 2 × 105 to 3 × 105, in 1 M-sodium chloride at 25 deg. C below the mean denaturation temperature are not fully extended random coils. Presumably, interaction between adenine and thymine-rich sequences, which are clustered at certain distances within the molecules, is the molecular basis for these observations.  相似文献   

20.
Renaturation of the reduced bovine pancreatic trypsin inhibitor   总被引:5,自引:0,他引:5  
Refolding of the reduced pancreatic trypsin inhibitor has been investigated using thiol-disulphide exchange with various disulphide reagents to regenerate the three disulphide bonds. Essentially quantitative renaturation was routinely achieved. The refolded inhibitor was indistinguishable from the original protein in interaction with trypsin and chymotrypsin, electrophoretic mobility, and nature of disulphide bonds.The kinetics of refolding using oxidized dithiothreitol to form the disulphide bonds have been studied in some detail. The renaturation reaction is usually of second-order, being first-order in both inhibitor and disulphide reagent concentrations. A short lag period in the appearance of inhibitor activity and the inhibition of the rate, but not the extent, of renaturation by low levels of reduced dithiothreitol suggest the accumulation of metastable intermediates. In addition, heterogeneity of the refolding reaction is apparent at high concentrations of disulphide reagent, with a fraction of the material being only slowly renatured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号