首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that glucocorticoid stimulation mediates the effect of exercise on circadian clock resetting in hamsters. We injected animals with 1 and 5 mg dexamethasone—a potent glucocorticoid agonist—at zeitgeber time (ZT) 4 and ZT6, circadian phases at which vigorous exercise induces maximal phase advances of about 3h. Neither dose of dexamethasone induced phase shifts that were significantly larger than those induced by injections of saline vehicle at either of the phases tested. Some animals, however, showed quite large and consistent phase shifts to repeated injections whether with saline or dexamethasone, such that there was a statistically significant correlation between individuals' responses to the two treatments. The data indicate no role for increased glucocorticoid activity in mediating the effects of exercise on circadian phase shifting, but suggest a modest role for nonspecific stimulation, independent of exercise, in inducing phase shifts at ZT4-ZT6. (Chronobiology International, 18(2), 203-213, 2001)  相似文献   

2.
This issue of Chronobiology International is dedicated to the age-related changes in circadian rhythms as they occur in humans. It seems timely to give an overview of the knowledge and hypotheses on these changes now that we enter a century in which the number and percentage of elderly in the population will be unprecedented. Although we should take care not to follow the current tendency to think of old age as a disease—ignoring the fine aspects of being old—there is definitely an age-related increase in the risk of a number of conditions that are at least uncomfortable.

Circadian rhythms have been attributed adaptive values that usually go unnoticed, but can surface painfully clear when derangements occur. Alterations in the regulation of circadian rhythms are thought to contribute to the symptoms of a number of conditions for which the risk is increased in old age (e.g., sleep disturbances, dementia, and depression). A multidisciplinary approach to investigate the mechanisms of age-related changes in circadian regulation eventually may result in treatment strategies that will improve the quality of life of the growing number of elderly.

Although diverse topics are addressed in this issue, the possible mechanisms by which a deranged circadian timing system may be involved in sleep disturbances receives the most attention. This seems appropriate in view of the numerous studies that have addressed this relation in the last decade and also because of the high frequency and strong impact of sleep disturbances in the elderly. This introduction to the special issue first briefly addresses the impact of disturbed sleep in the elderly to show that the development of therapeutic methods other than the currently available pharmacological treatments should be given high priority. I believe that chronobiological insights may play an important role in the development of rational therapeutical methods.(Chronobiology International, 17(3), 233–243, 2000)  相似文献   

3.
Agitation is a common problem in institutionalized patientswith Alzheimer's disease (AD). “Sundowning,” or agitationthat occurs primarily in the evening, is estimated to occur in 10—25%of nursing home patients. The current study examined circadian patterns ofagitation in 85 patients with AD living in nursing homes in the San Diego,California, area. Agitation was assessed using behavioral ratings collectedevery 15 minutes over 3 days, and activity and light exposure data were collectedcontinuously using Actillume recorders. A five-parameter extension of thetraditional cosine function was used to describe the circadian rhythms. Themean acrophase for agitation was 14:38, although there was considerable variabilityin the agitation rhythms displayed by the patients. Agitation rhythms weremore robust than activity rhythms. Surprisingly, only 2 patients (2.4%) were“sundowners.”In general, patients were exposed to very low levelsof illumination, with higher illumination during the night being associatedwith less robust agitation rhythms with higher rhythm minima (i.e., some agitationpresent throughout the day and night). Seasonality was examined; however,there were no consistent seasonal patterns found. This is the largest studyto date to examine agitation rhythms using behavioral observations over multiple24h periods. The results suggest that, although sundowning is uncommon, agitationappears to have a strong circadian component in most patients that is relatedto light exposure, sleep, and medication use. Further research into the understandingof agitation rhythms is needed to examine the potential effects of interventionstargeting sleep and circadian rhythms. (ChronobiologyInternational, 17(3), 405–418, 2000)  相似文献   

4.
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19–40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957971, 2001)  相似文献   

5.
RETINAL CIRCADIAN RHYTHMS IN HUMANS *   总被引:6,自引:0,他引:6  
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19-40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957-971, 2001)  相似文献   

6.
This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented. (Chronobiology International, 17(6), 719–732, 2000)  相似文献   

7.
Since consistent data on endogenous circadian rhythms of Mongolian gerbils are not available, the main aim of our study was to identify suitable conditions to receive stable and reproducible free-running rhythms of activity under different light intensities. Another objective was to determine the role of social cues as an exogenous zeitgeber in the absence of a light-dark (LD) cycle. We performed two long-term sets of experiments with adult male gerbils kept in climatic chambers under various photoperiods of at least 30 days each. In all cases, the time of lights on in the chambers differed from the daily starting hour of work in the animal house. Always, two animals per chamber were kept separately in cages with a running wheel while their activity was monitored continuously. During the first set, only three of eight animals developed intra- and interindividual variable free-running rhythms. The activity patterns seemed to be influenced by human activities outside, indicating high sensitivity to external factors. Subsequently, we damped the chambers and the room and restricted access to the room. In the following noise-reduced set, all gerbils developed comparable free-running rhythms of activity. We determined the mean of the free-running period τ, the activity-rest relationship α/θ and the amount of running wheel activity per day: τ = 23.7h ± 0.08h under low light (5 lux) and 25.5h ± 0.19h under high light intensities (450 lux); α/θ = 0.53 ± 0.08 under 5 lux and 0.34 ± 0.04 under 450 lux. The amount of daily activity was 12 times as high under 5 lux as under 450 lux. There was no indication that the two animals in one chamber socially synchronized each other. In conclusion, the pronounced rhythm changes in accordance with Aschoff's theory support the view that gerbils are mainly nocturnal animals. (Chronobiology International, 17(2), 137–145, 2000)  相似文献   

8.
Diurnal variation of sports performance usually peaks in the late afternoon, coinciding with increased body temperature. This circadian pattern of performance may be explained by the effect of increased core temperature on peripheral mechanisms, as neural drive does not appear to exhibit nycthemeral variation. This typical diurnal regularity has been reported in a variety of physical activities spanning the energy systems, from Adenosine triphosphate-phosphocreatine (ATP-PC) to anaerobic and aerobic metabolism, and is evident across all muscle contractions (eccentric, isometric, concentric) in a large number of muscle groups. Increased nerve conduction velocity, joint suppleness, increased muscular blood flow, improvements of glycogenolysis and glycolysis, increased environmental temperature, and preferential meteorological conditions may all contribute to diurnal variation in physical performance. However, the diurnal variation in strength performance can be blunted by a repeated-morning resistance training protocol. Optimal adaptations to resistance training (muscle hypertrophy and strength increases) also seem to occur in the late afternoon, which is interesting, since cortisol and, particularly, testosterone (T) concentrations are higher in the morning. T has repeatedly been linked with resistance training adaptation, and higher concentrations appear preferential. This has been determined by suppression of endogenous production and exogenous supplementation. However, the cortisol (C)/T ratio may indicate the catabolic/anabolic environment of an organism due to their roles in protein degradation and protein synthesis, respectively. The morning elevated T level (seen as beneficial to achieve muscle hypertrophy) may be counteracted by the morning elevated C level and, therefore, protein degradation. Although T levels are higher in the morning, an increased resistance exercise–induced T response has been found in the late afternoon, suggesting greater responsiveness of the hypothalamo-pituitary-testicular axis then. Individual responsiveness has also been observed, with some participants experiencing greater hypertrophy and strength increases in response to strength protocols, whereas others respond preferentially to power, hypertrophy, or strength endurance protocols dependent on which protocol elicited the greatest T response. It appears that physical performance is dependent on a number of endogenous time-dependent factors, which may be masked or confounded by exogenous circadian factors. Strength performance without time-of-day–specific training seems to elicit the typical diurnal pattern, as does resistance training adaptations. The implications for this are (a) athletes are advised to coincide training times with performance times, and (b) individuals may experience greater hypertrophy and strength gains when resistance training protocols are designed dependent on individual T response. (Author correspondence: )  相似文献   

9.
《Chronobiology international》2013,30(7):1369-1388
Australian sleepy lizards (Tiliqua rugosa) exhibit marked locomotor activity rhythms in the field and laboratory. Light-dark (LD) and temperature cycles (TCs) are considered important for the entrainment of circadian locomotor activity rhythms and for mediating seasonal adjustments in aspects of these rhythms, such as phase, amplitude, and activity pattern. The relative importance of 24 h LD and TCs in entraining the circadian locomotor activity rhythm in T. rugosa was examined in three experiments. In the first experiment, lizards were held under LD 12:12 and subjected to either a TC of 33:15?°?C in phase with the LD cycle or a reversed TC positioned in antiphase to the LD cycle. Following LD 12:12, lizards were maintained under the same TCs but were subjected to DD. Activity was restricted to the thermophase in LD, irrespective of the lighting regime and during the period of DD that followed, suggesting entrainment by the TC. The amplitude of the TC was lowered by 8?°?C to reduce the intensity and possible masking effect of the TC zeitgeber in subsequent experiments. In the second experiment, lizards were held under LD 12.5:11.5 and subjected to one of three treatments: constant 30?°?C, normal TC (30:20?°?C) in phase with the LD cycle, or reversed TC. Following LD, all lizards were subjected to DD and constant 30?°?C. Post-entrainment free-run records revealed that LD cycles and TCs could both entrain the locomotor rhythms of T. rugosa. In LD, mean activity duration (α) of lizards in the normal TC group was considerably less than that in the constant 30?°?C group. Mean α also increased between LD and DD in lizards in the normal TC group. Although there was large variation in the phasing of the rhythm in relation to the LD cycle in reversed TC lizards, TCs presented in phase with the LD cycle most accurately synchronized the rhythm to the photocycle. In the third experiment, lizards were held in DD at constant 30?°?C before being subjected to a further period of DD and one of four treatments: normal TC (06:00 to 18:00 h thermophase), delayed TC (12:00 to 00:00 h thermophase), advanced TC (00:00 to 12:00 h thermophase), or control (no TC, constant 30?°?C). While control lizards continued to free-run in DD at constant temperature, the locomotor activity rhythms of lizards subjected to TCs rapidly entrained to TCs, whether or not the TC was phase advanced or delayed by 6 h. There was no difference in the phase relationships of lizard activity rhythms to the onset of the thermophase among the normal, delayed, and advanced TC groups, suggesting equally strong entrainment to the TC in each group. The results of this experiment excluded the possibility that masking effects were responsible for the locomotor activity responses of lizards to TCs. The three experiments demonstrated that TCs are important for entraining circadian locomotor activity rhythms of T. rugosa, even when photic cues are conflicting or absent, and that an interaction between LD cycles and TCs most accurately synchronizes this rhythm. (Author correspondence: )  相似文献   

10.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

11.
《Chronobiology international》2013,30(9-10):1930-1942
The authors studied longitudinally four healthy young adults to explore if habitual evening intake of a “moderate” amount of wine alters parameters, including period (τ) of circadian rhythms. Subjects, synchronized by diurnal activity from 07.30?h?±?60?min to 23.00?h?±?90?min and nocturnal rest, were studied during a continuous 22-day span: 11 days without alcohol (control) and 11 days with a glass (200?mL) of wine nightly at supper (alcohol). The amount of alcohol ingested with dinner ranged from 0.28 to 0.42?g/kg/24?h/participant and the estimated evening blood alcohol level ranged from 0.02 to 0.10?g/L/participant. Single reaction time (SRT; yellow light signal), three-choice reaction time (CRT) (red, green, and yellow signals) of both hands, related cumulated errors (c-errors), as well as oral temperature (OT) and grip strength (GS) were measured four to seven times/24?h. Time series were analyzed individually to quantify 24-h means (M), circadian τ (power spectra), and cosinor, and correlation, χ2, and t tests were performed. The sleep-wake τ (actography) was 24?h in every subject for both conditions. With alcohol, all subjects showed an OT circadian τ shorter than the control one. The SRT circadian M was longer (poorer performance) with wine versus control in three subjects, while CRT was longer with wine versus control in only one subject. Correlation analyses also showed the detrimental effect of alcohol on the same variables. Number of days with <2 c-errors was predominant in control and decreased with alcohol, especially for SRT. The desynchronization of the 10 different documented rhythms was greater with alcohol with reference to control in two of the four studied subjects. This work shows that habitual "moderate" wine drinking at supper reduces the performance of subjects, increases the level of c-errors/24?h, especially for SRT, suggesting a “moderate” amount of alcohol has the potential to increase accident risk, and it can also desynchronize circadian time organization. (Author correspondence: )  相似文献   

12.
This study deals with the influence of time of day on neuromuscular efficiency in competitive cyclists during continuous exercise versus continuous rest. Knee extension torque was measured in ultradistance cyclists over a 24h period (13:00 to 13:00 the next day) in the laboratory. The subjects were requested to maintain a constant speed (set at 70% of their maximal aerobic speed obtained during a preliminary test) on their own bicycles, which were equipped with cyclosimulators. Every 4h, torque developed and myoelectric activity were estimated during maximal isometric voluntary contractions of knee extensors using an isokinetic dynamometer. Mesenteric temperature was monitored by telemetry. The same measures were also recorded while the subjects were resting awake until 13:00 the next day. During activity, torque changed within the 24h period (p <. 005), with an acrophase at 19:10 and an amplitude of 7.8% around the mean of 70.7%. At rest, a circadian rhythm was observed in knee extensor torque (p <. 05), with an acrophase at 19:30 and an amplitude of 6% around the mean of 92.3%. Despite the standardized conditions, the results showed that isometric maximal strength varied with time of day during both a submaximal exercise and at rest without prior exercise. The sine waves representing these two rhythms were correlated significantly. Although at rest the diurnal rhythm followed muscular activity (i.e., neurophysiological factors), during exercise, this rhythm was thought to stem more from fluctuations in the contractile state of muscle. (Chronobiology International, 17(5), 693–704, 2000)  相似文献   

13.
Our aim was to compare the circadian phase characteristics of healthy adolescent and young adult males in a naturalistic summertime condition. A total of 19 adolescents (mean age 15.7 years) and 18 young adults (mean age 24.5 years) with no sleep problems took part in this study. Two-night polysomnographic (PSG) sleep recordings and 24h secretion patterns of urinary 6-sulfatoxymelatonin were monitored in all 37 subjects. Sleep-wake patterns were initially assessed at home using a standard sleep diary. Circadian assessment included the measure of dim light melatonin offset (DLMOff) and the morningness-eveningness (M/E) questionnaire. As expected, compared to young adults, adolescents habitually spent more nocturnal time in bed and spent more time (and percentage) in delta sleep. No difference was found between adolescents and young adults on multiple sleep latency test (MSLT) sleep onset latencies, M/E, melatonin secretion measures (24h total, nighttime, daytime, and night ratio), and DLMOff. For the subjects as a whole, correlational analyses revealed a significant association between the DLMOff and M/E and between both these phase markers and habitual bedtimes, habitual rising times, and melatonin secretion measures (daytime levels and the night ratio). No association was found between phase markers and daytime sleepiness or sleep consolidation parameters such as sleep efficiency or number of microarousals. These results together indicate that adolescents and young adults investigated during summertime showed similar circadian phase characteristics, and that, in these age groups, an evening phase preference is associated with a delayed melatonin secretion pattern and delayed habitual sleep patterns without a decrease in sleep consolidation or vigilance. (Chronobiology International, 17(4), 489–501, 2000)  相似文献   

14.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood. (Chronobiology International, 17(5), 599–612, 2000)  相似文献   

15.
An association between increased risk of mortality and disruptions in rest/activity circadian rhythms (RAR) has been shown among adults with dementia and with metastatic colorectal cancer. However, the association among a more general population of older adults has not been studied. Our study population consisted of 2964 men aged?≥?67 yrs of age enrolled in the Outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. Rest/activity patterns were measured with wrist actigraphy. RAR parameters were computed and expressed as quintiles, and included acrophase (time of peak activity level), amplitude (peak-to-nadir difference), mesor (middle of the peak), pseudo F-value (overall circadian rhythmicity), beta (steepness), and alpha (peak-to-trough width). After adjustment for multiple potential confounders, men in the lowest quintile of pseudo F-value had a 57% higher mortality rate (hazard ratio [HR]?=?1.57, 95% CI, 1.03–2.39) than men in the highest quintile. This association was even stronger with increased risk of cardiovascular disease-related mortality (CVD) (HR?=?2.32, 95% CI, 1.04–5.22). Additionally, men in the lowest quintile of acrophase had a 2.8-fold higher rate of CVD-related mortality (HR?=?2.84, 95% CI, 1.29–6.24). There was no evidence of independent associations with amplitude, mesor, alpha, beta, and mortality risk. Older men with less robust RAR and earlier acrophase timing have modestly higher all-cause and CVD-related mortality rates. Further research should examine potential biological mechanisms underlying this association. (Author correspondence: )  相似文献   

16.
We previously reported daily variations in the mitotic activity of the endocrine cells in the pars intermedia of 21- and 28-day-old male mice. Since cellular proliferation might be affected by factors such as sex and age, we undertook the present experiments to study the mitotic activity of the pars intermedia from 14-, 28-, and 150-day-old female mice. Inbred C3H/S mice, grouped according to age, were housed under standard conditions (12h each of light and dark [LD 12:12]) for periodicity analysis and were killed in lots of 5–11 animals every 4h over a single 24h cycle, with each mouse receiving 2 μg/g of colchicine 4h before decapitation. Pituitaries were excised, extracted, fixed in buffered formaldehyde, embedded in celloidin-paraffin, sectioned at 5 μm, and stained with hematoxylin and eosin. We counted the total number of nuclei to estimate the total number of cells monitored and then calculated the mitotic index (metaphases/1000 nuclei). Differences were analyzed for statistical significance by the Student t test. While the 14-day-old animals manifested no significant changes in mitotic activity during the 24h cycle, the 28- and 150-day-old mice showed higher mitotic indices during the period of darkness. The average mitotic activity over the entire cycle, however, was higher in the two groups of younger animals than in the 150-day-old mice. Moreover, the averages for the 28-day-old females were higher than the corresponding values previously reported by us for male mice of the same age. (Chronobiology International, 17(6), 751–756, 2000)  相似文献   

17.
The variation in spontaneous meal patterning was studied in three genotypes (tau +/+, tau +/?and tau ?/?) of the Syrian hamster with an altered circadian period. Feeding activity was monitored continuously in 13 individuals from each genotype in constant dim light conditions. All three genotypes had on average six feeding episodes during the circadian cycle (about 20h in homozygous tau mutants and 22h in heterozygotes compared with 24h in wild-type hamsters). Thus, homozygous tau mutant hamsters had significantly more feeding episodes per 24h than wild types, and heterozygotes were intermediate. The average duration of feeding bouts (FBs) was indistinguishable (around 30 minutes) among the three genotypes, whereas the intermeal (IM) intervals were significantly shorter for homozygote tau mutant hamsters (99 minutes), intermediate for heterozygotes (116 minutes), and the longest for wild-type hamsters (148 minutes). Thus, the meal-to-meal duration was on average 25% shorter in homozygous tau mutants (16% in heterozygous) than in wild-type hamsters. The reduction of the circadian period has a pronounced effect on short-term feeding rhythms and meal frequency in hamsters carrying the tau mutation. (Chronobiology International, 18(4), 657–664, 2001)  相似文献   

18.
Circadian pacemakers control both “daytime” activity and nocturnal restlessness of migratory birds, and the daily rhythm of melatonin release from the pineal has been suggested to be involved in the control of migratory activity. To study the phase relations between the two activity components during entrainment and when free running, locomotor activity of bramblings (Fringilla montifringilla) was recorded continuously under a 12:12 “cool light” to “warm light” cycle (CL:WL, ca. 5000 K and ca. 2500 K, respectively) or blue light to red light cycle (BL:RL, maxima at 440 and 650 nm, respectively) at different irradiance ratios. Migratory activity was expressed primarily during the WL or RL phase of the light cycles. Under free-running conditions, the circadian periods τ correlated with the phase relations between day and night (migratory) activity components during preceding entrainment. Bramblings with migratory activity had significantly longer τ at constant light intensity than the same individuals without migratory activity. Birds with migratory activity reentrained faster after a 6h phase shift of the CL:WL cycle than birds without migratory activity. When exogenous melatonin was given in the drinking water (200 μg/mL 1% ethanol or 0.86 mM) to bramblings exposed to 12:12 CL:WL cycles with constant irradiance, the amounts of activity, which were initially higher during the WL phase of the light cycle, were suppressed to similar low levels during both light phases. The systematic changes in the amounts of activity during melatonin treatment were not correlated with consistent changes in entrainment status. The data support the hypothesis that changes in the amplitude and level of the daily melatonin cycle are involved in regulating migratory restlessness, by either allowing or inhibiting nocturnal activity. (Chronobiology International, 17(4), 471–488, 2000)  相似文献   

19.
We examined the well-known spontaneous discharge (SD) and lightevoked (PD) discharge of the crayfish caudal photoreceptor for the possible existence of a daily rhythm in spike frequency. To do this, we isolated the abdominal nerve cord in vitro and studied its discharge frequency in constant darkness. Single cosinor analysis revealed significant SD and PD circadian rhythms (P <. 05) with periods τ = 24.4h and 24.2h, respectively. These oscillations correspond to an endogenous circadian discharge of the caudal photoreceptor that is enhanced by light. The importance of this rhythm in the adaptive behavior of crayfish is discussed. (Chronobiology International, 18(5), 759–765, 2001)  相似文献   

20.
The expression of circadian clock genes was investigated inthe suprachiasmatic nuclei (SCN) of young adult and old laboratory mice. Sampleswere taken at two time points, which corresponded to the expected maximum(circadian time 7 [CT7]) or minimum (CT21) of mPermRNA expression. Whereas the young mice had a stable and well-synchronizedcircadian activity/rest cycle, the rhythms of old animals were less stableand were phase advanced. The expression of mPer1mRNA and mPer2 mRNA was rhythmic in bothgroups, with peak values at CT7. The levels of mClockand mCry1 mRNA were not different dependingon the time of day and did not vary with age. In contrast, an age-dependentdifference was found in the case of mPer2(but not mPer1) mRNA expression, with themaximum at CT7 significantly lower in old mice. The decreased expression of mPer2 may be relevant for the observed differencesin the overt activity rhythm of aged mice. (ChronobiologyInternational, 18(3), 559–565, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号