首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ventromedial hypothalamic nucleus (VMH) regulates various autonomic, endocrine, and behavioral activities. These activities show annual changes, and the pineal gland is involved in their adjustment to environmental cues. Therefore, this study investigated whether the VMH belongs to the effector structures of the pineal gland. To abolish the rhythmic melatonin release, male Wistar rats were subjected to pinealectomy (PX) or ganglionectomy (sympathetic denervation of the pineal gland, GX) regularly at the beginning of any of the four seasons. Brains from animals of PX-, GX-, and sham-operated control groups were prepared 3 months later for measurement of the nuclear volume, which changes according to the general gene activity. At each of the four seasons, 2000 nuclei of VMH neurons stemming from 18 animals per group were measured to obtain both seasonal daily mean values and annual mean values,respectively, as well as to calculate annual curves of the nuclear volume using empirical regression and locally adjusted polynomial approximation. The major findings are the following. First,inactivation of the pineal function influences the nuclear activity of VMH neurons. (2) PX and GX mainly depress the nuclear activity, indicating that the pineal influence on the VMH may predominantly be a stimulatory one. Third, size and direction of the changes caused by PX and GX vary in a seasonally dependent manner. Fourth, the annual rhythm of the nuclear activity of the VMH is modified by PX and GX.To explain how the pineal effects on the VMH may be mediated, a possible inhibitory influence of the suprachiasmatic nucleus (SCN),which has been activated in the same animals following both PX and GX, is discussed. In conclusion, the results confirm that the nuclear activity of VMH neurons underlies pineal influences. This also indicates an involvement of the pineal gland in many VMH-regulated functions.(Chronobiology International,17(1),15-28, 2000)  相似文献   

2.
Male adult (200-day-old) Chinese hamsters (Cricetulus griseus) raised from weaning under either LD 16:8 or LD 8:16 were used. The pineal gland of the Chinese hamster consists of superficial (major) and deep (minor) components and a continuous, or interrupted, narrow parenchymal stalk interposed between them. The volume of the superficial pineal including the parenchymal stalk is greater under LD 16:8 than under LD 8:16. Under both photoperiods, pinealocytes in the superficial pineal have larger nuclei and more abundant cytoplasm than those in the deep pineal. Nuclei in the superficial pineal appear pale and usually have irregular profiles, whereas those in the deep pineal appear dark and have round profiles. In the superficial pineal, pinealocyte nuclei are larger, paler, and more irregular; and, in addition, nuclear density is lower under LD 16:8 than under LD 8:16. Similar, but less prominent, photoperiod-induced changes occur in the volume of the deep pineal, the size of pinealocytes, and pinealocyte nuclear morphology in the deep pineal. The results indicate that the development and differentiation of pinealocytes in both pineal portions may be advanced under long photoperiods and delayed under short photoperiods, although pinealocytes in the deep pineal may remain not fully differentiated even in adults. Since testicular weights and body weights are similar under both photoperiods, the photoperiod may exert marked influences on the development of the pineal gland without affecting reproductive activity and growth rates of animals.  相似文献   

3.
Summary The possible presence of a direct nervous projection from the paraventricular nucleus (PVN) of the hypothalamus to the pineal gland of the rat was investigated by means of the anterograde neuron-tracing method using horseradish peroxidase. The tracer was injected unilaterally into the PVN and the animals were allowed to survive between 12 and 26 h.Numerous peroxidase-positive fibers were observed, ipsilateral to the injection site, in the stria medullaris thalami and could be followed into the medial habenular nucleus and the habenular commissure. From there, fibers penetrated into the deep pineal gland (lamina intercalaris), and further into the pineal stalk. These data support results of previous investigations describing retrograde labeling of the PVN following intrapineal injections of horseradish peroxidase and are in accordance with recent experiments demonstrating an influence of the PVN on electrical and biochemical activity of the pineal gland.  相似文献   

4.
Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the preoptic area, demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species.  相似文献   

5.
To analyse the role of peripheral sympathetic fibres in the regulation of thyroxine (T4), serum thyrotropin (TSH), pituitary TSH, and nuclear size of the lateral habenular nuclei rats were studied 30 d after bilateral cervical ganglionectomy (GX). In order to examine the influence of GX at normal temperature (24 degrees C) and exposure to cold (10 degrees C), rats were subjected to a 72 h exposure to cold before killing. 4 times a day (light-dark cycle: 14L: 10D, light on 05h00) the rats were sacrificed: middle light, middle darkness, 1 h after "light on" and 1 h after "light off". Ganglion removal resulted in a highly significant decrease of serum-T4 and increase of serum- and pituitary-TSH (primary hypothyroidism). Under these circumstances, the karyometric findings are showing a statistically significant magnification of the lateral habenular nuclear volume. In contrast to GX, exposure to cold increased T4- and TSH-levels and reduced the lateral habenular nuclear size. GX diminished the effect of exposure to cold of the T4- and TSH-levels and normalized the habenular nuclear volume. These results indicate that there exists a negative correlation between T4 (but not TSH) and lateral habenular nuclear size. Under consideration of previous investigations of the pineal nuclear size in hypo- and hyperthyroid state, our results are in agreement with the hypothesis of other authors that it is probably an inhibitory feed-back loop between the lateral habenula and the pineal gland (see also the high gamma-aminobutyric acid [GABA] content in the habenular complex). On the other hand, it was possible to confirm that the habenular complex is integrated into the thyroid circuit.  相似文献   

6.
7.
Effects of meal feeding schedule and bilateral lesions of the ventromedial hypothalamus (VMH) on the circadian rhythm of pineal serotonin N-acetyltransferase (SNAT) activity were examined in rats, under LD (12:12) condition. Neither meal feeding nor VMH lesions affected the phase of the circadian rhythm of pineal SNAT activity, but the VMH lesions reduced the level. Meal feeding caused a shift of the phases of the daily rhythms of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase activities in the liver. These findings suggest that the circadian rhythm of pineal SNAT activity is not entrained by the food intake, and that the VMH does not function as a master oscillator of the rhythm.  相似文献   

8.
In experiments on free and immobilized rabbits it was shown that ventromedial hypothalamic (VMH) neurons were characterized by specific sensitivity to TRH and bradykinin. Emotional stress in restricted animals was found to cause changes in spontaneous impulse activity of VMH neurons. Besides, the inversion of the VMH neuron sensitivity to TRH was observed while changes in the sensitivity to bradykinin were insignificant.  相似文献   

9.
A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

10.
Male lambs were utilized in an experiment designed to evaluate the effects of cranial cervical ganglionectomy (GX), castration and age on hormone secretion profiles. Blood plasma samples were collected at hourly intervals for 24 hours from 24 lambs aged 101 days and 20 lambs aged 277 days, then assayed for concentrations of luteinizing hormone (LH), testosterone and prolactin. At both ages pulsatile secretion of LH and testosterone was confirmed, but no circadian rhythm of LH testosterone or prolactin secretion was detected. Castration elevated LH levels significantly at both ages. GX and its interaction with castration had no effect on LH secretion at 101 days, but at 277 days these factors were significant, largely due to elevated levels being recorded from GX castrates. GX did not affect testosterone levels in entire animals at either age, while plasma from castrates contained no detectable testosterone. GX reduced prolactin concentrations at 101 days of age (summer) but elevated them at 277 days of age (winter). Castration and the interaction of castration with GX had no significant influence on plasma prolactin levels at either age. This study confirmed that the pineal gland of sheep is involved in the regulation of prolactin secretion, and probably influences LH secretion as well.  相似文献   

11.
Summary The intergeniculate leaflet of the lateral geniculate nucleus is considered to modulate circadian activity rhythms probably mediated by a direct neuronal connection to the suprachiasmatic nucleus. The present study in the gerbil demonstrates, by anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L), the existence of an additional neuronal projection from a subportion of the lateral geniculate nucleus, involving the intergeniculate leaflet, directly to the pineal gland. PHA-L-immunoreactive nerve fibers originating from perikarya at the injection site were located under the optic tract projecting towards the midsagittal plane. Delicate PHA-L-immunoreactive nerve fibers were observed in the posterior paraventricular thalamic nucleus, precommissural nucleus, olivary pretectal nucleus, anterior and posterior pretectal nuclei, and posterior commissure. Single fibers could be followed from the caudal part of the medial habenular nucleus and the pretectal area into the rostral part of the deep pineal gland. Other fibers continued through the posterior commissure into the contralateral hemisphere to terminate in the same structures as on the ipsilateral side. From the posterior commissure, small bundles of thick fibers entered the deep pineal gland where they arborized among the endocrine cells. A few nerve fibers were observed in the habenular commissure and the pineal stalk, but no fibers were identified in the superficial pineal. This direct geniculo-pineal connection suggests that the pineal gland is directly influenced by the optic system.  相似文献   

12.
Estrogen acts in the hypothalamic ventromedial nucleus (VMH) of female rats to promote sexual behavior, as typified by the lordosis response. Morphological changes in the VMH, such as increased synaptic profiles and increased dendritic spines, suggest that estrogen may modulate behavior by altering VMH synaptic organization. To understand the significance of these changes, this laboratory has been investigating the functional classes of lordosis-relevant neurons and their local connectivity. A neurotropic virus, pseudorabies virus (PRV), was used to transneuronally label the CNS network that controls the lordosis-producing muscles. When PRV was placed in the lumbar epaxial muscles, it was sequentially detected in the lumbar ventral horn, the medullary reticular formation, the periaqueductal gray, and finally the VMH. Subsequent analysis showed that the population of VMH neurons that were initially infected with PRV largely resided beyond the cluster of estrogen receptor-containing neurons. In a separate study, VMH neurons were visualized with Lucifer yellow, and their morphology was analyzed using confocal microscopy. Such analysis confirmed that estrogen treatment increased dendritic spines in the VMH. The particular VMH neurons in this study did not express nuclear estrogen receptor, which suggests that estrogen can increase spine density indirectly. These results represent initial steps toward unraveling the local circuit that mediates estrogenic action on a specific reproductive behavior.  相似文献   

13.
A 2-year study was conducted to determine under controlled conditions the role of the pineal gland in regulating the seasonal changes in antler growth and reproduction of male white-tailed deer. Blood samples were drawn from 6 pinealectomized (PX) and 18 control (C) deer at intervals of 2 weeks and analyzed for testosterone (T) and prolactin (Prl). Relative scrotal circumference and main beam antler length were recorded. Relative scrotal circumference was similar in PX and C groups, but the normal pattern was delayed 1 to 3 months in the PX deer relative to the C deer. The mean dates of beginning antler growth, velvet shedding, antler casting and pelage changes were significantly later in both years for PX deer than in C deer. Testosterone concentrations peaked 1 month later in the PX deer than in the C deer for both yearling and 2-year-old deer. Prl concentrations in C deer, but not in PX deer, were correlated highly with day length, and the PX deer were delayed relative to the C deer in showing the normal Prl pattern. Increasing levels of Prl in both groups coincided with beginning antler growth in both years. These results indicate that the pineal gland does not originate the seasonal cycles of male white-tailed deer but may synchronize cycles among individual deer, and regulate the circannual rhythm of Prl concentrations which may in turn influence other hormonal cycles.  相似文献   

14.
Abstract

A very distinct annual cycle of activity, as judged from nuclear volume changes, has been found in glandular cells of the pars tuberalis of the hypophysis and neurons in the nucleus tuberis hypothalami of adult green frogs (Rana esculenta). The changes are very similar at both sites, a single maximum in April and a single minimum in September being observed. Ependymal tanycy tes of the region which was investigated showed only very moderate activity changes. No sex differences were found with regard to the character of the cycle and the amplitude of changes. Only quantitative differences in absolute nuclear volume were found between the two sexes.  相似文献   

15.
The present study assessed annual adrenal gland activity in the Indian tropical Jungle bush quail, Perdicula asiatica. We also elucidated the role of the annual variations in gonadal steroids and melatonin in the regulation of its activity. Increasing day length (photoperiod), ambient temperature and rainfall are positively correlated with adrenal and gonadal functions, and inversely related to pineal gland activity. Pineal, adrenal and gonadal weights showed cyclical patterns relative to environmental factors, which were also correlated with plasma melatonin, corticosterone and gonadal steroids, respectively. In both sexes of P. asiatica, pineal gland weight and/or plasma melatonin levels were inversely related to adrenal lipids, (e.g. phospholipids, free and esterified cholesterol) and plasma corticosterone levels. Melatonin levels also showed an inverse relationship with plasma testosterone and estradiol levels. These studies indicate that changes in environmental factors promote annual variations in adrenal and gonadal activity probably by modulating the pineal gland. Melatonin receptors have been localized in the pars tuberalis, adrenal gland and gonads of birds, the pineal gland may, therefore, mediate environmental stimuli indirectly and directly to down regulate adrenal and gonadal activity, which run in parallel in this species.  相似文献   

16.
L Vollrath  H A Welker 《Life sciences》1988,42(22):2223-2229
Previous studies involving physical-immobilization stress in laboratory rats have yielded inconsistent results with respect to melatonin synthesis in the pineal gland. As melatonin formation undergoes circadian and infradian rhythms, the aim of the present study was to examine whether stress experiments exhibit day-to-day variation. Toward this end, groups of male Sprague-Dawley rats were stressed by physical immobilization on eight consecutive days, respectively, or left relatively undisturbed, and killed. The pineal gland was rapidly dissected out and serotonin N-acetyltransferase (NAT) activity and melatonin levels were measured. NAT activity was significantly depressed on experimental days 1, 3 and 5, and slightly depressed on day 7. In addition, both in control and experimental animals NAT activity exhibited statistically significant differences between experimental days. Pineal melatonin levels were less variable. On experimental days 3 and 6 immobilization led to a significant increase of pineal melatonin levels. These results show that day-to-day variation is an important factor that influences the outcome of stress experiments and represent another example that NAT activity and pineal melatonin levels do not always show corresponding changes.  相似文献   

17.
Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivates MPN MOP to facilitate lordosis. Opioid receptor-like receptor-1 (ORL-1) is expressed in ARH and ventromedial hypothalamus (VMH). Infusions of its endogenous ligand, orphanin FQ (OFQ/N, aka nociceptin), into VMH–ARH region facilitate lordosis. Whether OFQ/N acts in ARH and/or VMH and whether OFQ/N is necessary for steroid facilitation of lordosis are unclear. In Exp I, OFQ/N infusions in VMH and ARH that facilitated lordosis also deactivated MPN MOP indicating that OFQ/N facilitation of lordosis requires deactivation of ascending ARH-MPN projections by directly inhibiting ARH β-END neurons and/or through inhibition of excitatory VMH–ARH pathways to proopiomelanocortin neurons. It is unclear whether OFQ/N activates the VMH output motor pathways directly or via the deactivation of MPN MOP. In Exp II we tested whether ORL-1 activation is necessary for estradiol-only or estradiol + progesterone lordosis facilitation. Blocking ORL-1 with UFP-101 inhibited estradiol-only lordosis and MPN MOP deactivation but had no effect on estradiol + progesterone facilitation of lordosis and MOP deactivation. In conclusion, steroid facilitation of lordosis inhibits ARH β-END neurons to deactivate MPN MOP, but estradiol-only and estradiol + progesterone treatments appear to use different neurotransmitter systems to inhibit ARH-MPN signaling.  相似文献   

18.
本实验用HRP注入下丘脑腹内侧核结合逆行追踪与抗FOS蛋白和抗酪氨酸羟化酶(TH)抗血清双重免疫细胞化学相结合的三重标记方法,对大鼠孤束核和延髓腹外侧区至下丘脑腹内侧核的儿茶酚胺能投射神经元在胃伤害性刺激后的c-fos表达进行了观察。本文发现孤束核和延髓腹外侧区有七种不同的标记细胞:HRP、Fos、TH单标细胞Fos/HRP、Fos/TH、HRP/TH双标细胞和Fos/HRP/TH三标细胞。上述七种标记细胞主要分布在延髓中段和尾段孤束核的内侧亚核和延髓腹外侧区以及两者之间的网状结构。HRP标记细胞以注射侧为主,对侧有少量分布。本文结果证明,大鼠孤束核、延髓腹外侧区和网状结构内儿茶酚胺能神经元有些至下丘脑腹内侧核的投射,其中一部分儿茶酚胺能神经元参与了胃伤害性刺激的传导和调控。  相似文献   

19.
Data on a unique phenomenon of annual involution and neogenesis of thymus gland in hibernating animals are reviewed. In accordance with morphological findings, the annual thymus involution in hibernating animals is close to the age-dependent thymus involution occurring in all mammals once in a lifetime. In opposite, thymus involution in hibernating animals is totally different from the accidental involution. During hibernation, the thymus tissue is substituted by the brown fat tissue. In the spring, thymus gland neogenesis stats with intensive growth of epithelial tissue followed by lymphocyte infiltration and exhaustion of brown tissue. Morphological changes in the thymus gland within the annual cycle were compared with seasonal dynamics of structural and functional changes in peripheral lymphoid organs (spleen, lymphoglandular, peritoneal fluid). A general regularity was observed involving a decreased functional activity of immune cells in autumn, its sharp depression during winter hibernation, and obvious increase in summer with the onset of a season of animal activity. It is supposed that a sharp increase in the tumor necrosis factor (TNF) production observed during short-term awakenings in winter may serve an important link in this unique immune adaptation mechanism. The season changes in cellular TNF secretion suggest a mobilization of protective resources in hibernating animals in autumn and winter, i.e. in seasons when the thymus gland activity is depressed. The annual involution of thymus gland cannot be related to droppings in the environmental or body temperatures, as it comes long before their fall. Additionally, it is not related to ageing, as it occurs already in young hibernating animals. The role of hormones, including melatonine and corticosteroids, in mechanisms regulating thymus gland involution in hibernating animals is discussed.  相似文献   

20.
The nuclear receptor steroidogenic factor 1 (SF-1) plays essential roles in the development and function of the ventromedial hypothalamic nucleus (VMH). Considerable evidence links the VMH and SF-1 with the regulation of energy homeostasis. Here, we demonstrate that SF-1 colocalizes in VMH neurons with the cannabinoid receptor 1 (CB1R) and that a specific CB1R agonist modulates electrical activity of SF-1 neurons in hypothalamic slice preparations. We further show that SF-1 directly regulates CB1R gene expression via a SF-1-responsive element at -101 in its 5'-flanking region. Finally, we show that knockout mice with selective inactivation of SF-1 in the brain have decreased expression of CB1R in the region of the VMH and exhibit a blunted response to systemically administered CB1R agonists. These studies suggest that SF-1 directly regulates the expression of CB1R, which has been implicated in the regulation of energy homeostasis and anxiety-like behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号