首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light influences mammalian circadian rhythms in two different ways: (1) It entrains endogenous oscillators (clocks), which regulate physiology and behavior; and (2) it affects directly and often immediately physiology and behavior (these effects are also referred to as masking). Masking effects of light on pineal melatonin, locomotor activity, and the sleep-wake cycle in mammals and man are reviewed. They seem to represent a universal response in this group. The review reveals that the mechanism of photic inhibition of melatonin is fairly well understood, whereas only little is known about the influence of light on other circadian rhythm outputs, such as locomotor activity. (Chronobiology International, 18(5), 737-758, 2001)  相似文献   

2.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781–799, 2001)  相似文献   

3.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781-799, 2001)  相似文献   

4.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood. (Chronobiology International, 17(5), 599–612, 2000)  相似文献   

5.
The circadian pacemaker and sleep homeostasis play pivotal roles in vigilance state control. It has been hypothesized that age-related changes in the human circadian pacemaker, as well as sleep homeostatic mechanisms, contribute to the hallmarks of age-related changes in sleep, that is, earlier wake time and reduced sleep consolidation. Assessments of circadian parameters in healthy young (~20–30 years old) and older people (~65–75 years old)—in the absence of the confounding effects of sleep, changes in posture, and light exposure—have demonstrated that an earlier wake time in older people is accompanied by about a 1h advance of the rhythms of core body temperature and melatonin. In addition, older people wake up at an earlier circadian phase of the body temperature and plasma melatonin rhythm. The amplitude of the endogenous circadian component of the core body temperature rhythm assessed during constant routine and forced desynchrony protocols is reduced by 20–30% in older people. Recent assessments of the intrinsic period of the human circadian pacemaker in the absence of the confounding effects of light revealed no age-related reduction of this parameter in both sighted and blind individuals. Wake maintenance and sleep initiation are not markedly affected by age except that sleep latencies are longer in older people when sleep initiation is attempted in the early morning. In contrast, major age-related reductions in the consolidation and duration of sleep occur at all circadian phases. Sleep of older people is particularly disrupted when scheduled on the rising limb of the temperature rhythm, indicating that the sleep of older people is more susceptible to arousal signals genernpated by the circadian pacemaker. Sleep-homeostatic mechanisms, as assayed by the sleep-deprivation–induced increase of EEG slow-wave activity (SWA), are operative in older people, although during both baseline sleep and recovery sleep SWA in older people remains at lower levels. The internal circadian phase advance of awakening, as well as the age-related reduction in sleep consolidation, appears related to an age-related reduction in the promotion of sleep by the circadian pacemaker during the biological night in combination with a reduced homeostatic pressure for sleep. Early morning light exposure associated with this advance of awakening in older people could reinforce the advanced circadian phase. Quantification of the interaction between sleep homeostasis and circadian rhythmicity contributes to understanding age-related changes in sleep timing and quality. (Chronobiology International, 17(3), 285–311, 2000)  相似文献   

6.
Circadian pacemakers control both “daytime” activity and nocturnal restlessness of migratory birds, and the daily rhythm of melatonin release from the pineal has been suggested to be involved in the control of migratory activity. To study the phase relations between the two activity components during entrainment and when free running, locomotor activity of bramblings (Fringilla montifringilla) was recorded continuously under a 12:12 “cool light” to “warm light” cycle (CL:WL, ca. 5000 K and ca. 2500 K, respectively) or blue light to red light cycle (BL:RL, maxima at 440 and 650 nm, respectively) at different irradiance ratios. Migratory activity was expressed primarily during the WL or RL phase of the light cycles. Under free-running conditions, the circadian periods τ correlated with the phase relations between day and night (migratory) activity components during preceding entrainment. Bramblings with migratory activity had significantly longer τ at constant light intensity than the same individuals without migratory activity. Birds with migratory activity reentrained faster after a 6h phase shift of the CL:WL cycle than birds without migratory activity. When exogenous melatonin was given in the drinking water (200 μg/mL 1% ethanol or 0.86 mM) to bramblings exposed to 12:12 CL:WL cycles with constant irradiance, the amounts of activity, which were initially higher during the WL phase of the light cycle, were suppressed to similar low levels during both light phases. The systematic changes in the amounts of activity during melatonin treatment were not correlated with consistent changes in entrainment status. The data support the hypothesis that changes in the amplitude and level of the daily melatonin cycle are involved in regulating migratory restlessness, by either allowing or inhibiting nocturnal activity. (Chronobiology International, 17(4), 471–488, 2000)  相似文献   

7.
B D Goldman 《Steroids》1999,64(9):679-685
Circadian systems in a wide variety of organisms all appear to include three basic components: 1) biological oscillators that maintain a self-sustained circadian periodicity in the absence of environmental time cues; 2) input pathways that convey environmental information, especially light cues, that can entrain the circadian oscillations to local time; and 3) output pathways that drive overt circadian rhythms, such as the rhythms of locomotor activity and a variety of endocrine rhythms. In mammals, the circadian system is employed in the regulation of reproductive physiology and behavior in two very important ways. 1) In some species, there is a strong circadian component in the timing of ovulation and reproductive behavior, ensuring that these events will occur at a time when the animal is most likely to encounter a potential mate. 2) Many mammals exhibit seasonal reproductive rhythms that are largely under photoperiod regulation; in these species, the circadian system and the pineal gland are crucial components of the mechanism that is used to measure day length. The rhythm of pineal melatonin secretion is driven by a neural pathway that includes the circadian oscillator(s) in the suprachiasmatic nuclei. Melatonin is secreted at night in all mammals, and the duration of each nocturnal episode of melatonin secretion is inversely related to day length. The pineal melatonin rhythm appears to serve as an internal signal that represents day length and that is capable of regulating a variety of seasonal variations in physiology and behavior.  相似文献   

8.
Increased daytime napping, early morning awakening, frequent nocturnal sleep interruptions, and lowered amplitude and phase advance of the circadian sleep-wake rhythm are characteristic features of sleep-waking and chronobiological changes associated with aging. Especially in elderly patients with dementia, severely fragmented sleep-waking patterns are observed frequently and are associated with disorganized circadian rhythm of various physiological functions. Functional and/or organic deterioration of the suprachiasmatic nucleus (SCN), decreased exposure to time cues such as insufficient social interaction and reduced environmental light, lowered sensitivity of sensory organs to time cues, and reduced ability of peripheral effector organs to express circadian rhythms may cause these chronobiological changes. In many cases of dementia, the usual treatments for insomnia do not work well, and the development of an effective therapy is an important concern for health care practitioner and researchers. Recent therapeutical trials of supplementary administration of artificial bright light and the pineal hormone melatonin, a potent synchronizer for mammalian circadian rhythm, have indicated that these treatments are useful tools for demented elderly insomniacs. Both bright light and melatonin simultaneously ameliorate disorganized thermoregulatory and neuroendocrine systems associated with disrupted sleep-waking times, suggesting a new, potent therapeutic means for insomnia in the demented elderly. Future studies should address the most effective therapeutic design and the most suitable types of symptoms for treatment and investigate the use of these tools in preventive applications in persons in early stages of dementia. (Chronobiology International, 17(3), 419–432, 2000)  相似文献   

9.
The present study investigated whether the circadian oscillators controlling rhythms in activity behavior and melatonin secretion shared similar functional relationship with the external environment. We simultaneously measured the effects of varying illuminations on rhythms of movement and melatonin levels in Indian weaver birds under synchronized (experiment 1) and freerunning (experiment 2) light conditions. In experiment 1, weaverbirds were exposed to 12h light: 12h darkness (12L:12D; L = 20 lx, D = 0.1 lx) for 2.5 weeks. Then, the illumination of the dark period was sequentially enhanced to 1-, 5-, 10-, 20- and 100 lx at the intervals of about 2 to 4 weeks. In experiment 2, weaver birds similarly exposed for 2.5 weeks to 12L:12D (L = 100 lx; D = 0.1 lx) were released in constant dim light (LL(dim), 0.1 lx) for 6 weeks. Thereafter, LL(dim) illumination was sequentially enhanced to 1-, 3- and 5 lx at the intervals of about 2 weeks. Whereas the activity of singly housed individuals was continuously recorded, the plasma melatonin levels were measured at two time of the day, once in each light condition. The circadian outputs in activity and melatonin were phase coupled with an inverse phase relationship: melatonin levels were low during the active phase (light period) and high during the inactive phase (dark period). This phase relationship continued in both the synchronized and freerunning states as long as circadian activity and melatonin oscillators subjectively interpreted synchronously the daily light environment, based on illumination intensity and/or photophase contrast, as the times of day and night. There were dissociations between the response of the activity rhythms and melatonin rhythms in light conditions when the contrast between day and night was much reduced (20:10 lx) or became equal. We suggest that circadian oscillators governing activity behavior and melatonin secretion in weaverbirds are phase coupled, but they seem to independently respond to environmental cues. This would probably explain the varying degree to which the involvement of pineal/melatonin in regulation of circadian behaviors has been found among different birds.  相似文献   

10.
《Chronobiology international》2013,30(7):1443-1461
Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12?h days, two 12?h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p<?0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p?=?0.0003). Mean sleep duration for nurses working during the day (8.27?h) was significantly longer than for those working at night (4.78?h, p<?0.0001). An inverse association (p?=?0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of melatonin production to the day among those working at night. Additionally, in this study, sleep duration was not correlated with urinary melatonin levels, suggesting it may not be a good proxy for melatonin production. (Author correspondence: )  相似文献   

11.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

12.
One of the most important functions modulated by melatonin is the synchronization of circadian rhythms. In crayfish (Procambarus clarkii), we have obtained evidence that the amplitude of the electrical response to light of the retinal photoreceptors the receptor potential, is modified by the action of melatonin and that the magnitude of this action depends on the circadian time of melatonin application. In contrast, the electroretinogram (ERG) circadian rhythm can be synchronized by either single or periodic melatonin application. In this work we hypothesized that, in crayfish, melatonin acts on effectors and on pacemaker of ERG circadian rhythm as a non-photic synchronizer. Melatonin could be a hormone that sends a signal of darkness to the ERG circadian system.  相似文献   

13.
The present study evaluated effects of green light emitting diode (LED) spectra on oxidative stress and circadian rhythms in goldfish exposed to various concentrations (0.25 and 0.5 mg/L) of NH3, under a white fluorescent bulb (control; simulated natural period) and green LED light. We measured mRNA expression and activity of antioxidant enzymes (superoxide dismutase and catalase) and mRNA expression of circadian rhythms (period 2), in addition to levels of plasma hydrogen peroxide, cortisol and melatonin. Damage to nuclear DNA was assessed using the comet assay. All stress indicators and melatonin were significantly lower in the green LED group than in the control group. With an increase in the concentration of ammonia, the observed effects became even more significant and generally increased with time. Comparatively, damage to the nuclear DNA was greater in the 0.5 mg/L NH3 group, and lower in the green LED group. The Period 2 mRNA expression reduced as increasing ammonia treatment but increased as green LED exposed. We have suggested that Green LED reduced levels of oxidative stress, which suggests an antioxidant effect against NH3 toxicity. Additionally, ammonia is affected the circadian rhythms and the green LED wavelength is able to regulate effectively the circadian rhythm.  相似文献   

14.
Summary The pineal and the eyes are known to be important components in the circadian system of some species of lizards; their effects may be mediated by the hormone melatonin. We examined the role played by these structures in the desert iguana (Dipsosaurus dorsalis). Surgical removal of the pineal had no effect on circadian locomotor rhythms, even though this procedure abolished the circadian rhythm of melatonin in the blood. Furthermore, when the isolated pineal of Dipsosaurus was studied in organ culture, it showed no circadian rhythm of melatonin secretion, as do pineals of some other lizard species, although it did produce large quantities of this hormone. Bilateral ocular enucleation had only small effects on the freerunning period of locomotor rhythms, without affecting melatonin levels in the blood. Behavioral circadian rhythms persisted in desert iguanas subjected to both enucleation and pinealectomy. These data suggest that neither the pineal nor the eyes are central components of the circadian pacemaking system in Dipsosaurus, nor is melatonin critically involved in maintaining its organization.Abbreviations CT circadian time - ZT zeitgeber time - LL constant light - LD light-dark cycle - DD constant darkness - freerunning circadian period  相似文献   

15.
16.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

17.
We investigated the effect of light spectra on circadian rhythm by exogenous prolactin (PRL) using light-emitting diodes (LEDs): red, green and purple. We injected PRL into live fish or treated cultured brain cells with PRL. We measured changes in the expressions of period 2 (Per2), cryptochrome 1 (Cry1), melatonin receptor 1 (MT1) mRNAs, and MT1 proteins, and in the plasma PRL, serotonin and melatonin levels. After PRL injection and exposure to green light, MT1 expression and plasma melatonin levels were significantly lower, but the expressions of Per2 and Cry1 were significantly higher than the others. Plasma serotonin after PRL injection and exposure to red light was significantly lower than others. These results indicate that injection of high concentration PRL inhibits melatonin, and inhibited melatonin regulates circadian rhythm via clock genes and serotonin. Thus, exogenous PRL regulates the circadian rhythm and light spectra influence the effect of PRL in goldfish.  相似文献   

18.
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations LD Light-dark - LLdim constant dim light - LLbright constant bright light - PX pinealectomy - EX blinding - SCN suprachiasmatic nucleus  相似文献   

19.
The purpose of this work was to investigate the circadian melatonin system in two tropical teleost species characterized by different behavioral habits, Nile tilapia (diurnal) and African catfish (nocturnal). To do so, fish were subjected to either a control photoperiod (12L:12D), continuous light (LL) or darkness (DD), or a 6L:6D photoperiod. Under 12L:12D, plasma melatonin levels were typically low during the photophase and high during the scotophase in both species. Interestingly, in both species, melatonin levels significantly decreased prior to the onset of light, which in catfish reached similar basal levels to those during the day, demonstrating that melatonin production can anticipate photic changes probably through circadian clocks. Further evidence for the existence of such pacemaker activity was obtained when fish were exposed to DD, as a strong circadian melatonin rhythm was maintained. Such an endogenous rhythm was sustained for at least 18 days in Nile tilapia. A similar rhythm was shown in catfish, although DD was only tested for four days. Under LL, the results confirmed the inhibitory effect of light on melatonin synthesis already reported in other species. Finally, when acclimatized to a short photo-cycle (6L:6D), no endogenous melatonin rhythm was observed in tilapia under DD, with melatonin levels remaining high. This could suggest that the circadian clocks cannot entrain to such a short photocycle. Additional research is clearly needed to further characterize the circadian axis in teleost species, identify and localize the circadian clocks, and better understand the environmental entrainment of fish physiology.  相似文献   

20.
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT circadian time - DD continuous dark - L: D light: dark cycle - PMEL pineal melatonin - PRC phase response curve - RIA radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号