首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the nonlinear properties of respiratory movement during different sleep stages, we applied an algorithm proposed by Grassberger and Procaccia to calculate the correlation dimension in rapid eye movement and non-rapid eye movement sleep. We also tested for nonlinearity in respiratory movement by comparing the correlation dimension for the original data with that for surrogate data. The study population included eight healthy volunteers. We recorded respiratory movement and the sleep electroencephalogram for 8 h. The correlation dimension for respiratory movement was 3.28+/-0.19 (mean +/- SD) during rapid eye movement sleep, 2.31+/-0.21 during light sleep (stage I) and 1.64+/-0.25 during deep slow-wave sleep (stage IV). Thus, the correlation dimension differed significantly by sleep stage (p < 0.001): it was least during stage IV sleep and greatest during REM. The correlation dimension for the original data also differed from that for surrogate data, confirming nonlinearity in original data. The results suggest that the nonlinear dynamics of respiratory movement in sleep changes with sleep stage, presumably due to the information processing by the cerebral cortex. The increased correlation dimension for respiratory movement in REM sleep may be related to increased cortical information processing associated with dreaming.  相似文献   

2.
The changes in the chaotic element of the cardiac rhythm (CR) were quantitated at different sleep stages by calculating the correlation dimension (D2) in 26 healthy subjects of both sexes (mean age 29.2 years), including 7 trained and 19 untrained subjects. Three untrained subjects took part in tests with autonomic nervous system blockers (atropine and propranolol). The study demonstrated a correlation between the changes in D2 at different sleep stages and the level of the autonomic regulation of CR. As the influence of the parasympathetic system on CR increased from one stage of slow wave sleep to another, D2 increased; during rapid eye movement (REM) sleep, this influence weakened and D2 decreased. The character of changes differed in the trained and untrained subjects and depended on the initial level of the autonomic regulation of CR. In the trained subjects, characterized by predominance of the parasympathetic regulation of CR, the initial and subsequent D2 values were higher than in the untrained subjects. Both during wakefulness and at all stages of sleep, D2 increased when the sympathetic regulation of CR was blocked, decreased when the parasympathetic regulation was blocked, and reached the lowest level when both of them were blocked. This showed that the chaotic element of CR, expressed numerically by D2, depends on the regulating effects of the autonomic nervous system.  相似文献   

3.
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003–0.02 Hz), neurogenic VLFOs (0.02–0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04–0.15 Hz), and total LFOs (0.003–0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.  相似文献   

4.
The effect of phasic eye movement activity on ventilation during rapid-eye-movement (REM) sleep was studied in seven healthy young adults by use of the respiratory inductive plethysmograph. Mean ventilation (VE) and ventilatory components during REM sleep were not significantly different from that seen in either stages 1-2 or 3-4 sleep. The percent of rib cage contribution to ventilation in REM sleep, 29.3 +/- 5.1%, was reduced compared with 54.4 +/- 5.8% in stage 1-2 and 52.2 +/- 4.3% in stage 3-4 sleep (P less than 0.005). When one separated breaths by the degree of associated phasic eye movement activity, it became apparent that breathing during REM sleep is very heterogeneous. Increasing eye movement activity was associated with inhibition of ventilation with a reduction in VE from 5.1 +/- 0.3 to 3.8 +/- 0.3 l/min. Tidal volume and frequency both fell, whereas inspiratory duration was unchanged. Compartmental ventilation was also affected, with the fall in the rib cage contribution from 37.8 +/- 6.4 to 15.3 +/- 5.6%. Chest wall and abdominal movement became more asynchronous as phasic-eye-movement activity increased and frank paradoxical breathing was seen.  相似文献   

5.
The hypothesis that cardiac rhythms are associated with chaotic dynamics implicating a healthy flexibility has motivated the investigation of continuous ECG with methods of nonlinear system theory. Sleep is known to be associated with modulations of the sympathetic and parasympathetic control of cardiac dynamics. Thus, the differentiation of ECG signals recorded during different sleep stages can serve to determine the usefulness of nonlinear measures in discriminating ECG states in general. For this purpose the following six nonlinear measures were implemented: correlation dimension D2, Lyapunov exponent L1. Kolmogorov entropy K2, as well as three measures derived from the analysis of unstable periodic orbits. Results of this study show that continuous ECG signals can be differentiated from linear stochastic surrogates by each of the nonlinear measures. The most significant finding with respect to the sleep-related differentiation of ECG signals is an increase in dominant chaoticity assessed by L1 and a reduction in the degrees of freedom estimated by D2 during REM sleep compared to slow wave sleep. Our findings suggest that the increase in dominant chaoticity during REM sleep with regard to time-continuous nonlinear analysis is comparable to an increased heart rate variability. The reduction in the correlation dimension may be interpreted as an expression of the withdrawal of respiratory influences during REM sleep. Received: 7 June 1999 / Accepted in revised form: 10 December 1999  相似文献   

6.
Because successive rapid-eye-movement (REM) sleep periods in the night are longer in duration and have more phasic events, ventilation during late REM sleep might be more affected than in earlier episodes. Despite the increase in eye movement density (EMD) in late REM sleep, average minute ventilation was, however, not reduced compared with that in early REM sleep. Decreases in rib cage motion (mean inspiratory flow of the rib cage) in association with increasing EMD were offset by increments in respiratory frequency. Apart from expiratory time, there were no significant changes in the slopes of the relationships between EMD and specific ventilatory components, from early to late REM sleep periods. However, there was an increase in the number of episodes when ventilation was reduced during late REM sleep. Changes in ventilatory pattern during late REM sleep are due to changes in the underlying nature of REM sleep. The ventilatory response during eye movements is, however, subject specific. Some subjects exhibit large decrements in mean inspiratory flow of the rib cage and increments in respiratory frequency during bursts of eye movement, whereas other individuals demonstrate only small changes in these ventilatory parameters.  相似文献   

7.
Shiftworkers are often required to sleep at inappropriate phases of their circadian timekeeping system, with implications for the dynamics of ultradian sleep stages. The independent effects of these changes on cognitive throughput performance are not well understood. This is because the effects of sleep on performance are usually confounded with circadian factors that cannot be controlled under normal day/night conditions. The aim of this study was to assess the contribution of prior wake, core body temperature, and sleep stages to cognitive throughput performance under conditions of forced desynchrony (FD). A total of 11 healthy young adult males resided in a sleep laboratory in which day/night zeitgebers were eliminated and ambient room temperature, lighting levels, and behavior were controlled. The protocol included 2 training days, a baseline day, and 7?×?28-h FD periods. Each FD period consisted of an 18.7-h wake period followed by a 9.3-h rest period. Sleep was assessed using standard polysomnography. Core body temperature and physical activity were assessed continuously in 1-min epochs. Cognitive throughput was measured by a 5-min serial addition and subtraction (SAS) task and a 90-s digit symbol substitution (DSS) task. These were administered in test sessions scheduled every 2.5?h across the wake periods of each FD period. On average, sleep periods had a mean (± standard deviation) duration of 8.5 (±1.2) h in which participants obtained 7.6 (±1.4) h of total sleep time. This included 4.2 (±1.2) h of stage 1 and stage 2 sleep (S1–S2 sleep), 1.6 (±0.6) h of slow-wave sleep (SWS), and 1.8 (±0.6) h of rapid eye movement (REM) sleep. A mixed-model analysis with five covariates indicated significant fixed effects on cognitive throughput for circadian phase, prior wake time, and amount of REM sleep. Significant effects for S1–S2 sleep and SWS were not found. The results demonstrate that variations in core body temperature, time awake, and amount of REM sleep are associated with changes in cognitive throughput performance. The absence of significant effect for SWS may be attributable to the truncated range of sleep period durations sampled in this study. However, because the mean and variance for SWS were similar to REM sleep, these results suggest that cognitive throughput may be more sensitive to variations in REM sleep than SWS. (Author correspondence: )  相似文献   

8.
Sleep adaptation in an unfamiliar environment, the so-called “first-night effect”, is known to occur in healthy individuals. To avoid the confounding effects of the “first-night effect”, the first-night sleep data are not used in most of sleep studies. In the present study, we examined changes of sleep adaptation in hospitalized patients with depression. Polysomnographic recordings were obtained for two consecutive nights from 14 patients, and sleep parameters were compared between both nights. Total sleep time, sleep latency, awakening times, movement awakening time, sleep efficiency, sleep architecture, rapid eye movement (REM) sleep latency, REM intensity, REM density, REM time, REM cycles, and other indicators showed no significant difference (p > 0.05) between the first and second nights. To conclude, hospitalized patients with depression have relatively less change in sleep adaptation, thus, the data from their first night do not need to be discarded.  相似文献   

9.
《Chronobiology international》2013,30(8):1596-1608
Narcolepsy with cataplexy (NC) is a sleep disorder caused by the loss of the hypothalamic neurons producing hypocretin. The clinical hallmarks of the disease are excessive daytime sleepiness, cataplexy, other rapid eye movement (REM) sleep phenomena, and a fragmented wake-sleep cycle. Experimental data suggest that the hypocretin system is involved primarily in the circadian timing of sleep and wakefulness but also in the control of other biological functions such as thermoregulation. The object of this study was to determine the effects of the hypocretin deficit and of the wake-sleep cycle fragmentation on body core temperature (BcT) modulation in a sample of drug-free NC patients under controlled conditions. Ten adult NC patients with low cerebrospinal fluid (CSF) hypocretin levels (9 men; age: 38?±?12 yrs) were compared with 10 healthy control subjects (7 men; age: 44.9?±?12 yrs). BcT and sleep-wake cycle were continuously monitored for 44?h from 12:00?h. During the study, subjects were allowed to sleep ad libitum, living in a temperature- and humidity-controlled room, lying in bed except when eating, in a light-dark schedule (dark [D] period: 23:00–07:00?h). Sleep structure was analyzed over the 24-h period, the light (L) and the D periods. The wake-sleep cycle fragmentation was determined by calculating the frame-shift index (number of 30-s sleep stage shifts occurring every 15?min) throughout the 44-h study. The analysis of BcT circadian rhythmicity was performed according to the single cosinor method. The time-course changes in BcT and in frame-shift index were compared between narcoleptics and controls by testing the time?×?group (controls versus NC subjects) interaction effect. The state-dependent analysis of BcT during D was performed by fitting a mixed model where the factors were wake-sleep phases (wake, NREM stages 1 and 2, slow-wave sleep, and REM sleep) and group. The results showed that NC patients slept significantly more than controls during the 24?h due to a higher representation of any sleep stage (p?<?.001) during L, whereas the total amount of night sleep and its architecture were comparable in the two groups. Wake-sleep fragmentation was higher (p?<?.001) in NC subjects especially during L. Despite these differences, mesor (24-h mean), amplitude, and acrophase (peak time) of BcT circadian rhythm were comparable in narcoleptics and controls, and no between-group differences were detected in the time-course changes and in the state-dependent modulation at night of BcT. These data indicate that the hypocretin deficit in drug-free NC patients and their altered wake-sleep cycle couple with an intact modulation of BcT. (Author correspondence: )  相似文献   

10.
Summary Sleep in adult domestic pigeons was studied by continuous 24-h recording of the EEG, EMG and EOG. Vigilance states were scored on the basis of behavioral observations, visual scoring of the polygraph records, and EEG power spectra.The animals showed a clear nocturnal preference for sleep. Throughout the dark period, EEG slow-wave activity was at a uniform level, whereas REM sleep (REMS) showed an increasing trend.EEG power density values differed significantly between the vigilance states. In general the values were highest in nonREM sleep (NREMS), intermediate in waking (W) and lowest in REMS.Twenty-four hour sleep deprivation reduced W and increased REMS, effects that are well documented in mammals. Unlike in mammals, EEG slow-wave activity remained unchanged, whereas EOG activity in W and NREMS was enhanced.Abbreviations EEG electroencephalogram - EMG electromyogram - EOG electrooculogram - SD sleep deprivation - L light - D dark - LD light dark - NREMS non rapid eye movement sleep - REMS REM sleep  相似文献   

11.
Wedescribe an analysis of dynamic behavior apparent in times-seriesrecordings of infant breathing during sleep. Three principal techniqueswere used: estimation of correlation dimension, surrogate dataanalysis, and reduced linear (autoregressive) modeling (RARM). Correlation dimension can be used to quantify the complexity of timeseries and has been applied to a variety of physiological andbiological measurements. However, the methods most commonly used toestimate correlation dimension suffer from some technical problems thatcan produce misleading results if not correctly applied. We used a newtechnique of estimating correlation dimension that has fewer problems.We tested the significance of dimension estimates by comparingestimates with artificial data sets (surrogate data). On the basis ofthe analysis, we conclude that the dynamics of infant breathing duringquiet sleep can best be described as a nonlinear dynamic system withlarge-scale, low-dimensional and small-scale, high-dimensionalbehavior; more specifically, a noise-driven nonlinear system with atwo-dimensional periodic orbit. Using our RARM technique, we identifiedthe second period as cyclic amplitude modulation of the same period asperiodic breathing. We conclude that our data are consistent withrespiration being chaotic.

  相似文献   

12.
 In various studies the implementation of nonlinear and nonconventional measures has significantly improved EEG (electroencephalogram) analyses as compared to using conventional parameters alone. A neural network algorithm well approved in our laboratory for the automatic recognition of rapid eye movement (REM) sleep was investigated in this regard. Originally based on a broad range of spectral power inputs, we additionally supplied the nonlinear measures of the largest Lyapunov exponent and correlation dimension as well as the nonconventional stochastic measures of spectral entropy and entropy of amplitudes. No improvement in the detection of REM sleep could be achieved by the inclusion of the new measures. The accuracy of the classification was significantly worse, however, when supplied with these variables alone. In view of results demonstrating the efficiency of nonconventional measures in EEG analysis, the benefit appears to depend on the nature of the problem. Received: 10 October 2000 / Accepted in revised form: 26 April 2001  相似文献   

13.

Sleep related bruxism (SB) is the grinding of teeth during sleep and may also be associated with various sleep disorders. However, little is known about sleep structures and disturbances of SB. This study aims to further understand sleep architectures using overnight polysomnography (PSG) in patients with SB. We analyze sleep parameters and architectures in 33 healthy subjects and 25 patients with SB. PSG and sleep questionnaires measured sleep variables including proportions of rapid eye movement (REM) sleep, non-REM sleep (N1, N2 and N3), latency to sleep onset, sleep efficiency, wake after sleep onset (WASO), apnea hypopnea index (AHI), respiratory disturbance index (RDI), and periodic limb movement index (PLMI) during sleep for both groups. Sleep efficiency and the proportion of N3 in the SB group were significantly lower than in the control group (P < 0.05). In addition latency to onset of sleep and WASO were markedly increased in the SB group (P < 0.05). AHI, RDI, and PLMI showed no differences between the groups. Epworth Sleepiness Scale was significantly higher in the SB group than in the control group (P < 0.05). In contrast to previous studies, we conclude that patients with SB are not good sleepers based on PSG study. Further studies are required to assess the relationship between sleep quality and the severity of SB.

  相似文献   

14.
 Non-linear time sequence analysis has been performed on infant sleep measurement data in order to obtain more information about the respiratory processes. As a first step, respiration data during REM sleep were analysed with methods from non-linear dynamics, especially, the correlation integral and the slope of its log-log plot, representing the correlation dimension. Before calculation of the correlation integral, a special kind of filtering has to be applied to the data. This filtering algorithm is a state space and singular value decomposition-based noise reduction method, and it is used to separate the noise and signal subspaces. The dynamics of a signal (in our case data from the respiratory process) and its degrees of freedom can be characterised by the correlation integral and by the correlation dimension, respectively. The main result of this study is that the highly irregular-looking breathing patterns during REM sleep could be described by a deterministic system, and finally the physiological significance of this finding is discussed. Received: 17 June 1994/Accepted in revised form: 18 November 1994  相似文献   

15.

One of the essential features of rapid eye movement (REM) sleep behavior disorder is REM sleep without atonia seen during nocturnal polysomnographic recordings. In this paper we provide an overview about the varied scoring criteria proposed for visual analysis of loss of atonia during REM sleep. The automatic quantification of loss of atonia overcomes many of the limitations of visual scoring and these new approaches are reviewed. Finally, the contributions of these automatic methods to the understanding of the complex mechanisms underlying muscle atonia and motor suppression during REM sleep are briefly illustrated.

  相似文献   

16.
The Djungarian hamster (Phodopus sungorus) is a markedly photoperiodic rodent which exhibits daily torpor under short photoperiod. Normative data were obtained on vigilance states, electroencephalogram (EEG) power spectra (0.25–25.0 Hz), and cortical temperature (TCRT) under a 168 h light-dark schedule, in 7 Djungarian hamsters for 2 baseline days, 4 h sleep deprivation (SD) and 20 h recovery.During the baseline days total sleep time amounted to 59% of recording time, 67% in the light period and 43% in the dark period. The 4 h SD induced a small increase in the amount of non-rapid eye movement (NREM) sleep and a marked increase in EEG slow-wave activity (SWA; mean power density 0.75–4.0 Hz) within NREM sleep in the first hours of recovery. TCRT was lower in the light period than in the dark period. It decreased at transitions from either waking or rapid eye movement (REM) sleep to NREM sleep, and increased at the transition from NREM sleep to waking or REM sleep. After SD, TCRT was lower in all vigilance states.In conclusion, the sleep-wake pattern, EEG spectrum, and time course of TCRT in the Djungarian hamster are similar to other nocturnal rodents. Also in the Djungarian hamster the time course of SWA seems to reflect a homeostatically regulated process as was formulated in the two-process model of sleep regulation.Abbreviations EEG electroencephalogram - EMG electromyogram - N NREM sleep - NREM non-rapid eye movement - R REM sleep - REM rapid eye movement - SD sleep deprivation - SWA slow-wave activity - TCRT cortical temperature - TST total sleep time - VS vigilance state - W waking  相似文献   

17.
We evaluated the performance of a consumer multi-sensory wristband (Fitbit Charge 2?), against polysomnography (PSG) in measuring sleep/wake state and sleep stage composition in healthy adults.

In-lab PSG and Fitbit Charge 2? data were obtained from a single overnight recording at the SRI Human Sleep Research Laboratory in 44 adults (19—61 years; 26 women; 25 Caucasian). Participants were screened to be free from mental and medical conditions. Presence of sleep disorders was evaluated with clinical PSG. PSG findings indicated periodic limb movement of sleep (PLMS, > 15/h) in nine participants, who were analyzed separately from the main group (n = 35). PSG and Fitbit Charge 2? sleep data were compared using paired t-tests, Bland–Altman plots, and epoch-by-epoch (EBE) analysis.

In the main group, Fitbit Charge 2? showed 0.96 sensitivity (accuracy to detect sleep), 0.61 specificity (accuracy to detect wake), 0.81 accuracy in detecting N1+N2 sleep (“light sleep”), 0.49 accuracy in detecting N3 sleep (“deep sleep”), and 0.74 accuracy in detecting rapid-eye-movement (REM) sleep. Fitbit Charge 2? significantly (p < 0.05) overestimated PSG TST by 9 min, N1+N2 sleep by 34 min, and underestimated PSG SOL by 4 min and N3 sleep by 24 min. PSG and Fitbit Charge 2? outcomes did not differ for WASO and time spent in REM sleep. No more than two participants fell outside the Bland–Altman agreement limits for all sleep measures. Fitbit Charge 2? correctly identified 82% of PSG-defined non-REM–REM sleep cycles across the night. Similar outcomes were found for the PLMS group.

Fitbit Charge 2? shows promise in detecting sleep-wake states and sleep stage composition relative to gold standard PSG, particularly in the estimation of REM sleep, but with limitations in N3 detection. Fitbit Charge 2? accuracy and reliability need to be further investigated in different settings (at-home, multiple nights) and in different populations in which sleep composition is known to vary (adolescents, elderly, patients with sleep disorders).  相似文献   

18.
ABSTRACT

Some shiftwokers in the long-haul transportation industries (i.e. road, rail, sea, air) have the opportunity to sleep in on-board rest facilities during duty periods. These rest facilities are typically fitted with a seat with a maximum back angle to the vertical of 20°, 40°, or 90°. The aim of this study was to examine the impact of “back angle” on the quantity and quality of sleep obtained in a seat during a daytime nap. Six healthy adults (3 females aged 27.0 years and 3 males aged 22.7 years) each participated in three conditions. For each condition, participants had a 4-h sleep opportunity in a bed (02:00–06:00 h) followed by a 4-h sleep opportunity in a seat (13:00–17:00 h). The only difference between conditions was in the back angle of the seat to the vertical during the seat-based sleep periods: 20° (upright), 40° (reclined), and 90° (flat). Polysomnographic data were collected during all sleep episodes. For the seat-based sleep episodes, there was a significant effect of back angle on three of four measures of sleep quantity, i.e. total sleep time, slow-wave sleep, and rapid eye movement (REM) sleep, and three of four measures of sleep quality, i.e. latency to REM sleep, arousals, and stage shifts. In general, the quantity and quality of sleep obtained in the reclined and flat seats were better than those obtained in the upright seat. In particular, compared to the flat seat, the reclined seat resulted in similar amounts of total sleep and slow-wave sleep, but 37% less REM sleep; and the upright seat resulted in 29% less total sleep, 30% less slow-wave sleep, and 79% less REM sleep. There are two main mechanisms that may explain the results. First, it is difficult to maintain the head in a comfortable position for sleep when sitting upright, and this is likely exacerbated during REM sleep, when muscle tone is very low. Second, an upright posture increases sympathetic activity and decreases parasympathetic activity, resulting in a heightened level of physiological arousal.  相似文献   

19.
 We discuss the estimation of the correlation dimension of optokinetic nystagmus (OKN), a type of reflexive eye movement. Parameters of the time-delay reconstruction of the attractor are investigated, including the number of data points, the time delay, the window duration, and the duration of the signal being analyzed. Adequate values are recommended. Digital low-pass filtering causes the dimension to increase as the filter cutoff frequency decreases, in accord with a previously published prediction. The stationarity of the correlation dimension is examined; the dimension appears to decrease over the course of 120 s of continuous stimulation. Implications for the reliable estimation of the dimension are considered. Several surrogate data sets are constructed, based on both early (0–30 s) and late (100–130 s) OKN segments. Most of the surrogate data sets randomize some aspect of the original OKN, while maintaining other aspects. Dimensions are found for all surrogates and for the original OKN. Evidence is found that is consistent with some amount of deterministic and nonlinear dynamics in OKN. When this structure is randomized in the surrogate, the dimension changes or the dimension algorithm ceases to converge to a finite value. Implications for further analysis and modeling of OKN are discussed. Received: 30 August 1996/Accepted in revised form: 13 November 1996  相似文献   

20.

We examined the effects of low-dose oral risperidone (RIS) on nocturnal sleep in healthy participants. This study was performed in a placebo-controlled manner in 10 healthy male volunteers (mean age, 23.6 years), with administration of 0.5 mg of RIS oral solution or a placebo in the morning or evening for 2 consecutive days. Each night, polysomnography (PSG) was performed, and PSG data during non-rapid-eye movement (REM) sleep were processed by power spectral analysis. An evening administration of 0.5 mg RIS significantly increased total sleep time, sleep efficiency and sleep stage 3, and significantly decreased total waking time and waking after sleep onset (P < 0.05). A morning administration of 0.5 mg RIS significantly increased sleep stage 3 (P < 0.05). According to power spectral analysis, the evening administration of RIS significantly increased the theta power (P < 0.05) and decreased the beta power (P < 0.05) during non-REM sleep. The administration of 0.5 mg oral RIS increases sleep stage 3 and increases total sleep time following evening administration.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号