首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The apical membrane is an important site of mercury toxicity in shark rectal gland tubular cells. We compared the effects of mercury and other thiol-reacting agents on shark CFTR (sCFTR) and human CFTR (hCFTR) chloride channels using two-electrode voltage clamping of cRNA microinjected Xenopus laevis oocytes. Chloride conductance was stimulated by perfusing with 10 µM forskolin (FOR) and 1 mM IBMX, and then thio-reactive species were added. In oocytes expressing sCFTR, FOR + IBMX mean stimulated Cl conductance was inhibited 69% by 1 µM mercuric chloride and 78% by 5 µM mercuric chloride (IC50 of 0.8 µM). Despite comparable stimulation of conductance, hCFTR was insensitive to 1 µM HgCl2 and maximum inhibition was 15% at the highest concentration used (5 µM). Subsequent exposure to glutathione (GSH) did not reverse the inhibition of sCFTR by mercury, but dithiothreitol (DTT) completely reversed this inhibition. Zinc (50–200 µM) also reversibly inhibited sCFTR (40–75%) but did not significantly inhibit hCFTR. Similar inhibition of sCFTR but not hCFTR was observed with an organic mercurial, p-chloromercuriphenylsulfonic acid (pCMBS). The first membrane spanning domain (MSD1) of sCFTR contains two unique cysteines, C102 and C303. A chimeric construct replacing MSD1 of hCFTR with the corresponding sequence of sCFTR was highly sensitive to mercury. Site-specific mutations introducing the first but not the second shark unique cysteine in hCFTR MSD1 resulted in full sensitivity to mercury. These experiments demonstrate a profound difference in the sensitivity of shark vs. human CFTR to inhibition by three thiol-reactive substances, an effect that involves C102 in the shark orthologue. chloride transport; Xenopus laevis oocytes; dithiothreitol; glutathione; p-chloromercuriphenylsulfonic acid; cystic fibrosis transmembrane regulator  相似文献   

2.
Vasoactive intestinal peptide (VIP) is a secretagogue that mediates chloride secretion in intestinal epithelia. We determined the relative potency of VIP and related peptides in the rectal gland of the elasmobranch dogfish shark and cloned and expressed the VIP receptor (sVIP-R) from this species. In the perfused rectal gland, VIP (5 nM) stimulated chloride secretion from 250 +/- 66 to 2,604 +/- 286 microeq x h(-1) x g(-1); the relative potency of peptide agonists was VIP > PHI = GHRH > PACAP > secretin, where PHI is peptide histidine isoleucine amide, GHRH is growth hormone-releasing hormone, and PACAP is pituitary adenylate cylase activating peptide. The cloned sVIP-R from shark rectal gland (SRG) is only 61% identical to the human VIP-R1. It maintains a long, extracellular NH2 terminus with seven cysteine residues, and has three N-glycosylation sites and eight other residues implicated in VIP binding. Two amino acids considered important for peptide binding in mammals are not present in the shark orthologue. When sVIP-R and the CFTR chloride channel were coexpressed in Xenopus oocytes, VIP increased chloride conductance from 11.3 +/- 2 to 127 +/- 34 microS. The agonist affinity for activating chloride conductance by the cloned receptor was VIP > GHRH = PHI > PACAP > secretin, a profile mirroring that in the perfused gland. The receptor differs from previously cloned VIP-Rs in having a low affinity for PACAP. Expression of both sVIP-R and CFTR mRNA was detected by quantitative PCR in shark rectal gland, intestine, and brain. These studies characterize a unique G protein-coupled receptor from the shark rectal gland that is the oldest cloned VIP-R.  相似文献   

3.
The present study concerns the involvement of the ceramide produced through sphingomyelinase (SMase)-mediated catalysis in airway anion secretion of Calu-3 cells. Short-circuit current (Isc) measurement revealed that isoproterenol (ISO, 0.1 microM)-induced anion secretion was prevented by pretreatment with SMase (0.3 U/ml, for 30 min) from the basolateral but not the apical side, although basal and 1-ethyl-2-benzimidazolinone (1-EBIO, a Ca2+-activated K+ channel opener)-induced Isc were unaffected. The effects of SMase were reproduced in responses to forskolin (20 microM) or 8-bromo-cAMP (2 mM). C2-ceramide, a cell-permeable analog, also repressed the 8-bromo-cAMP-induced responses. Nystatin permeabilization studies confirmed that the SMase- and C2-ceramide-induced repressions were due to hindrance of augmentation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance across the apical membrane. Further, SMase failed to influence K+ conductance across the basolateral membrane. These results suggest that the ceramide originating from basolateral sphingomyelin acts on activated CFTR from the cytosolic side, hindering anion secretion.  相似文献   

4.
The rectal gland of the dogfish shark is a model system for active transepithelial transport of chloride. It has been shown previously that mercuric chloride, one of the toxic environmental pollutants, inhibits chloride secretion in this organ. In order to investigate the mechanism of action of HgCl(2) at a membrane-molecular level, plasma membrane vesicles were isolated from the rectal gland and the effect of mercury on the activity of the Na-K-2Cl cotransporter was investigated in isotope flux studies. During a 30 s exposure HgCl(2) inhibited cotransport activity in a dose-dependent manner with an apparent K(i) of approx. 50 microM. The inhibition was complete after 15 s, partly reversible by dilution of the incubation medium and completely attenuated upon addition of reduced glutathione. The extent of inhibition by mercury depended on the ionic composition of the medium. The sensitivity of the cotransporter was highest when only the high affinity binding sites for sodium and chloride were saturated. Organic mercurials such as p-chloromercuribenzoic acid and p-chloromercuriphenylsulfonic acid at 100 microM did not inhibit the cotransporter, similarly exposure of the vesicles to 10 mM H(2)O(2) or 1 mM dithiothreitol for 30 min at 15 degrees C did not change cotransport activity. Transport activity was, however, reduced by 45.9+/-2.5% after an incubation with 3 mM N-ethylmaleimide for 20 min. Blocking free amino groups by N-hydroxysuccinimide or biotinamidocapronate-N-hydroxysulfosuccinimide had no effect. Investigations on the sidedness of the plasma membrane vesicles, employing the asymmetry of the (Na+K)-ATPase, demonstrated a right-side-out orientation in which the former extracellular face of the membrane is exposed to the incubation medium. In addition, extracellular mercury (5x10(-5) M) inhibited bumetanide-sensitive rubidium uptake into T84 cells by 48.5+/-7.1% after a 2 min incubation period. This inhibition was reversible in a manner similar to that observed in the plasma membrane vesicles. These studies suggest that in isolated rectal gland plasma membrane vesicles the Na-K-2Cl cotransporter (sNKCC1) exposes functionally relevant mercury binding sites at its external surface. These sites represent probably cysteines, the accessibility and/or sensitivity of which depends on the functional state of the transporter.  相似文献   

5.
Comparison of diverse orthologs is a powerful tool to study the structure and function of channel proteins. We investigated the response of human, killifish, pig, and shark cystic fibrosis transmembrane conductance regulator (CFTR) to specific inhibitors of the channel: CFTR(inh)-172, glibenclamide, and GlyH-101. In three systems, including organ perfusion of the shark rectal gland, primary cultures of shark rectal gland tubules, and expression studies of each ortholog in cRNA microinjected Xenopus laevis oocytes, we observed fundamental differences in the sensitivity to inhibition by these channel blockers. In organ perfusion studies, shark CFTR was insensitive to inhibition by CFTR(inh)-172. This insensitivity was also seen in short-circuit current experiments with cultured rectal gland tubular epithelial cells (maximum inhibition 4 ± 1.3%). In oocyte expression studies, shark CFTR was again insensitive to CFTR(inh)-172 (maximum inhibition 10.3 ± 2.5% at 25 μM), pig CFTR was insensitive to glibenclamide (maximum inhibition 18.4 ± 4.4% at 250 μM), and all orthologs were sensitive to GlyH-101. The amino acid residues considered responsible by previous site-directed mutagenesis for binding of the three inhibitors are conserved in the four CFTR isoforms studied. These experiments demonstrate a profound difference in the sensitivity of different orthologs of CFTR proteins to inhibition by CFTR blockers that cannot be explained by mutagenesis of single amino acids. We believe that the potency of the inhibitors CFTR(inh)-172, glibenclamide, and GlyH-101 on the CFTR chloride channel protein is likely dictated by the local environment and the three-dimensional structure of additional residues that form the vestibules, the chloride pore, and regulatory regions of the channel.  相似文献   

6.
Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane.  相似文献   

7.
Pulmonary epithelia of air-breathing vertebrates are covered by a thin, fluid layer that is essential for immune defense and gas diffusion. The composition of this layer is maintained by ion transport mechanisms, including Cl(-) transport. The present study focuses on the function of basolateral Cl(-) channels in Xenopus pulmonary epithelia, since knowledge concerning this issue is limited. Therefore, Ussing chamber measurements were performed, and transepithelial short-circuit currents (I(SC)) were monitored. Basolateral application of the Cl(-) channel inhibitor N-phenylanthranilic acid (DPC) resulted in an increase of the I(SC), indicating a DPC-sensitive Cl(-) conductance. This observation was confirmed in experiments using an apical-to-basolateral Cl(-) gradient, with and without nystatin (apical side) to permeabilize the epithelia as well as by establishing an iodide gradient. The DPC-sensitive Cl(-) conductance was influenced by procedures interfering with apical Cl(-) secretion. For example, the effect of forskolin was increased when basolateral Cl(-) channels were blocked by the simultaneous application of DPC. Activation of apical Cl(-) secretion by forskolin/IBMX and subsequent DPC application resulted in a significantly reduced DPC effect. Accordingly, DPC led to an increased apical Cl(-) secretion estimated by an increased 5-nitro-2-(3-phenylpropylamino)benzoic acid-sensitive I(SC). Furthermore, inhibition of basolateral anion exchangers responsible for Cl(-) uptake resulted in a decreased DPC-sensitive current. Taken together, we have evidence concerning the function of basolateral Cl(-) channels in Xenopus pulmonary epithelium and that these channels play a significant role in mediating apical Cl(-) secretion involving a novel Cl(-) recycling mechanism across the basolateral membrane.  相似文献   

8.
The time- and dose-dependent effects of wortmannin on transepithelial electrical resistance (Rte) and forskolin-stimulated chloride secretion in T84 monolayer cultures were studied. In both instances, maximal effects developed over 2 h and were stable thereafter. Inhibition of forskolin-stimulated chloride secretion, as measured by the short-circuit current (Isc) technique, had an IC50 of 200-500 nM, which is 100-fold higher than for inhibition of phosphatidylinositol 3-kinase (PI3K), but similar to the IC50 for inhibition of myosin light chain kinase (MLCK) and mitogen-activated protein kinases (MAPK). Previous work demonstrated that 500 nM wortmannin did not inhibit the cAMP activation of apical membrane chloride channels. We show here that 500 nM wortmannin has no affect on basolateral Na/K/2Cl-cotransporter activity, but inhibits basolateral membrane Na/K-ATPase activity significantly. The MLCK inhibitors ML-7 and KT5926 were without affect on forskolin-stimulated Isc. Similarly, the p38- and MEK-specific MAPK inhibitors SB203580 and PD98059 did not reduce forskolin-stimulated Isc. In contrast, the non-specific MAPK inhibitor apigenin reduced forskolin-stimulated Isc and basolateral membrane Na/K-ATPase activity similar to wortmannin. In isolated membranes from T84 cells, wortmannin did not inhibit Na/K-ATPase enzymatic activity directly. We conclude that one or more MAPK may regulate the functional expression of basolateral membrane Na/K-ATPase by controlling the abundance of enzyme molecules in the plasma membrane.  相似文献   

9.
The gills and intestinal epithelia of teleost fish express cystic fibrosis transmembrane conductance regulator (CFTR), and utilize this low conductance anion channel in the apical membrane for ion secretion in seawater gill and in the basolateral membrane for ion absorption in freshwater gill. Similarly, in the intestine CFTR is present in the basolateral membrane for intestinal absorption and also in the apical membrane of secreting intestine. The expression of CFTR and the directed trafficking of the protein to the apical or basolateral membrane is salinity-dependent. The CFTR gene has been cloned and sequenced from several teleost species and although all the major elements in the human gene are present, including two nucleotide binding domains that are common to all ATP binding cassette (ABC) transporters, the sequences are divergent compared to shark or human. In euryhaline fish adapting to seawater, CFTR, localized immunocytochemically, redistributes slowly from a basolateral location to the apical membrane while ion secretory capacity increases. The facility with which teleosts regulate CFTR expression and activation during salinity adaptation make this system an appealing model for the expression and trafficking operation of this labile gene product.  相似文献   

10.
In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl-dependent short circuit current (ISC) response, consistent with net transepithelial Cl secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated ISC responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated ISC by about 40%, suggesting that basolateral uptake of Cl is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl channel to mediate cAMP-activated Cl secretion.  相似文献   

11.
The secondary active Cl(-) secretion in seawater (SW) teleost fish gills and elasmobranch rectal gland involves basolateral Na(+),K(+)-ATPase and NKCC, apical membrane CFTR anion channels, and a paracellular Na(+)-selective conductance. In freshwater (FW) teleost gill, the mechanism of NaCl uptake is more controversial and involves apical V-type H(+)-ATPase linked to an apical Na(+) channel, apical Cl(-)-HCO-3 exchange and basolateral Na(+),K(+)-ATPase. Ca(2+) uptake (in FW and SW) is via Ca(2+) channels in the apical membrane and Ca(2+)-ATPase in the basolateral membrane. Mainly this transport occurs in mitochondria rich (MR) chloride cells, but there is a role for the pavement cells also. Future research will likely expand in two major directions, molded by methodology: first in physiological genomics of all the transporters, including their expression, trafficking, operation, and regulation at the molecular level, and second in biotelemetry to examine multivariable components in behavioral physiological ecology, thus widening the integration of physiology from the molecular to the environmental levels while deepening understanding at all levels.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown previously to be regulated by inhibitory G proteins. In the present study, we demonstrate inhibition of CFTR by alphaG(i2) and alphaG(i1), but not alphaG(0), in Xenopus oocytes. We further examined whether regulators of G protein signaling (RGS) proteins interfere with alphaG(i)-dependent inhibition of CFTR. Activation of CFTR by IBMX and forskolin was attenuated in the presence of alphaG(i2), indicating inhibition of CFTR by alphaG(i2) in Xenopus oocytes. Coexpression of the proteins RGS3 and RGS7 together with CFTR and alphaG(i2) partially recovered activation by IBMX/forskolin. 14-3-3, a protein that is known to interfere with RGS proteins, counteracted the effects of RGS3. These data demonstrate the regulation of CFTR by alphaG(i) in Xenopus oocytes. Because RGS proteins interfere with the G protein-dependent regulation of CFTR, this may offer new potential pathways for pharmacological intervention in cystic fibrosis.  相似文献   

13.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

14.
In the heterocellular toad skin epithelium the beta-adrenergic receptor agonist isoproterenol activates cyclic AMP-dependent Cl(-) channels that are not located in the principal cells. With four experimental approaches, in the present study, we tested the hypothesis that the signalling pathway targets cystic fibrosis transmembrane conductance regulator (CFTR)-chloride channels of mitochondria-rich cells. (i) Serosal application of isoproterenol (log(10)EC(50)=-7.1+/-0.2; Hill coefficient=1.1+/-0.2), as well as noradrenaline, activated an anion pathway with an apical selectivity sequence, G(Cl)>G(Br)> or =G(NO(3))>G(I), comparable to the published selectivity sequence of cloned human CFTR expressed in Xenopus oocytes. (ii) Known modulators of human CFTR, glibenclamide (200 micromol/l) and genistein (50 micromol/l), depressed and activated, respectively, the receptor-stimulated G(Cl). Genistein did not modify the anion selectivity. (iii) Transcellular voltage clamp studies of single isolated mitochondria-rich cells revealed functional beta-adrenergic receptors on the basolateral membrane. With approximately 60,000 mitochondria-rich cells per cm(2), the saturating activation of 11.9+/-1.6 nS/cell accounted for the measured isoproterenol-activated transepithelial conductance of 600-900 microS/cm(2). In forskolin-stimulated cells, glibenclamide (200 micromol/l) reversibly inhibited the transcellular conductance by 9.6+/-1.6 nS/cell. (iv) With primers constructed from cloned Xenopus CFTR and PCR amplification of reverse-transcribed mRNA from toad skin, full-length Bufo CFTR cDNA was generated. The derived protein of 1466 residues shows 86% homology with xCFTR and 89% homology with hCFTR. All major functional sequences, that is, the R- and the NBF1- and NBF2-domains are well-conserved as are the predicted transmembrane segments proposed to form the pore of the channel protein. These new results taken together with our previously identified small-conductance CFTR-like Cl(-) channel in the apical membrane of the mitochondria-rich cells lead to the conclusion that the toad's CFTR gene codes for a functional Cl(-) channel in the apical plasma membrane of this minority cell type.  相似文献   

15.
The massive secretion of salt and water in cholera-induced diarrhea involves binding of cholera toxin (CT) to ganglioside GM1 in the apical membrane of intestinal epithelial cells, translocation of the enzymatically active A1-peptide across the membrane, and subsequent activation of adenylate cyclase located on the cytoplasmic surface of the basolateral membrane. Studies on nonpolarized cells show that CT is internalized by receptor-mediated endocytosis, and that the A1-subunit may remain membrane associated. To test the hypothesis that toxin action in polarized cells may involve intracellular movement of toxin-containing membranes, monolayers of the polarized intestinal epithelial cell line T84 were mounted in modified Ussing chambers and the response to CT was examined. Apical CT at 37 degrees C elicited a short circuit current (Isc: 48 +/- 2.1 microA/cm2; half-maximal effective dose, ED50 integral of 0.5 nM) after a lag of 33 +/- 2 min which bidirectional 22Na+ and 36Cl- flux studies showed to be due to electrogenic Cl- secretion. The time course of the CT-induced Isc response paralleled the time course of cAMP generation. The dose response to basolateral toxin at 37 degrees C was identical to that of apical CT but lag times (24 +/- 2 min) and initial rates were significantly less. At 20 degrees C, the Isc response to apical CT was more strongly inhibited (30-50%) than the response to basolateral CT, even though translocation occurred in both cases as evidenced by the formation of A1-peptide. A functional rhodamine-labeled CT-analogue applied apically or basolaterally at 20 degrees C was visualized only within endocytic vesicles close to apical or basolateral membranes, whereas movement into deeper apical structures was detected at 37 degrees C. At 15 degrees C, in contrast, reduction to the A1-peptide was completely inhibited and both apical and basolateral CT failed to stimulate Isc although Isc responses to 1 nM vasoactive intestinal peptide, 10 microM forskolin, and 3 mM 8Br-cAMP were intact. Re-warming above 32 degrees C restored CT-induced Isc. Preincubating monolayers for 30 min at 37 degrees C before cooling to 15 degrees C overcame the temperature block of basolateral CT but the response to apical toxin remained completely inhibited. These results identify a temperature-sensitive step essential to apical toxin action on polarized epithelial cells. We suggest that this event involves vesicular transport of toxin-containing membranes beyond the apical endosomal compartment.  相似文献   

16.
Recent studies on frog skin acini have challenged the question whether Cl(-) secretion or Na(+) absorption in the airways is driven by luminal K(+) channels in series to a basolateral K(+) conductance. We examined the possible role of luminal K(+) channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl(-) secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+2)Cl(-)K(+) cotransporter azosemide. Similarly, the compound 293B, a blocker of basolateral KCNQ1/KCNE3 K(+) channels effectively blocked Cl(-) secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K(+) channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K(+) channels in mouse airways, using luminal 293B, clotrimazole and Ba(2+) or different K(+) channel toxins such as charybdotoxin, apamin and a-dendrotoxin. Thus, the present study demonstrates Cl(-) secretion in mouse airways, which depends on basolateral Na(+2)Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl(-) channels. Cl(-) secretion is maintained by the activity of basolateral K(+) channels, while no clear evidence was found for the presence of a luminal K(+) conductance.  相似文献   

17.
Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl- dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in oocytes even after exposure to hypertonic or hypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.  相似文献   

18.
Paths of ion transport across canine fetal tracheal epithelium   总被引:1,自引:0,他引:1  
Fluid secretion by the fetal sheep lung is thought to be driven by secretion of Cl- by the pulmonary epithelium. We previously demonstrated Cl- secretion by tracheal epithelium excised from fetal dogs and sheep. In this study we characterized the ion transport pathways across fetal canine tracheal epithelium. The transport of Na+ and Cl- across trachea excised from fetal dogs was evaluated from transepithelial electrical properties and isotope fluxes. Under basal conditions the tissues were characterized by a lumen-negative potential difference (PD) of 11 mV and conductance of 5.2 mS/cm2. The short-circuit current (Isc) was 43 microA/cm2 (1.6 mueq.cm-2.h-1). Basal Na+ flows were symmetrical, but net Na+ absorption (1.1 mueq.cm-2.h-1) could be induced by exposure of the luminal surface to amphotericin B (10(-6) M). Bilateral replacement of Na+ reduced Isc by 85%. Replacement of submucosal Na+ or exposure to submucosal furosemide (10(-4) M) reduced net Cl- secretion by 60-70%. Luminal exposure to indomethacin (10(-6) M) induced a 50% decrease in Isc, whereas isoproterenol (10(-6) M) increased Isc by 120%. The properties of the Cl- secretory pathway across fetal dog trachea are consistent with the model proposed for Cl- secretion across adult dog trachea and other Cl- -secreting tissues (e.g., bullfrog cornea and shark rectal gland). The absence of basal Na+ absorption by fetal dog trachea probably reflects limited apical membrane Na+ permeability.  相似文献   

19.
In the rectal gland of the spiny dogfish (Squalus acanthias), chloride enters the cell via a cotransport system together with sodium and potassium in a 2 Cl-: 1 Na+: 1 K+ stoichiometry. The system is energized by the electrochemical potential for sodium directed into the cell. Sodium is extruded from the cell by Na-K-ATPase located on the basolateral cell membrane. Chloride leaks into the lumen following a favorable electrical gradient. Potassium is thought to recirculate across the basolateral cell membrane. Since barium ions inhibit the efflux of potassium from cells we used barium chloride to explore the role of potassium in the process of stimulated secretion of chloride by the gland. The secretion of chloride was stimulated with theophylline 2.5 X 10(-4)M and dibutyryl cyclic AMP 5 X 10(-5)M. Ba++ inhibited the secretion of chloride in a way that was reversible and dose dependent. The reduction in secretion was associated with a parallel fall in transglandular electrical potential. Inhibition was half maximal at a concentration of Ba++ of 10(-3)M. The reduction in efflux of potassium produced by Ba++ presumably decreases the potassium diffusion potential, thus reducing the electronegativity of the cell and dissipating the driving force for chloride across the apical cell membrane. Recirculation of K+ across the basolateral border of the cell would thus be essential for the maintenance of chloride secretion by the gland.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its Cl(-) channel properties, has regulatory interactions with other epithelial ion channels including the epithelial Na(+) channel (ENaC). Both the open probability and surface expression of wild type CFTR Cl(-) channels are increased significantly when CFTR is co-expressed in Xenopus oocytes with alphabetagamma-ENaC, and conversely, the activity of ENaC is inhibited following wild type CFTR activation. Using the Xenopus oocyte expression system, a lack of functional regulatory interactions between DeltaF508-CFTR and ENaC was observed following activation of DeltaF508-CFTR by forskolin and isobutylmethylxanthine (IBMX). Whole cell currents in oocytes expressing ENaC alone decreased in response to genistein but increased in response to a combination of forskolin and IBMX followed by genistein. In contrast, ENaC currents in oocytes co-expressing ENaC and DeltaF508-CFTR remained stable following stimulation with forskolin/IBMX/genistein. Furthermore, co-expression of DeltaF508-CFTR with ENaC enhanced the forskolin/IBMX/genistein-mediated activation of DeltaF508-CFTR. Our data suggest that genistein restores regulatory interactions between DeltaF508-CFTR and ENaC and that combinations of protein repair agents, such as 4-phenylbutyrate and genistein, may be necessary to restore DeltaF508-CFTR function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号