首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
An immobilized chloroplast film, prepared by immobilizing spinach chloroplasts in 2 wt% agar gel, was attached to a SnO2 optically transparent electrode to obtain the immobilized chloroplast film electrode. The immobilized chloroplast film electrode worked as a photoanode under illumination in the presence of methyl viologen, which was an electron carrier from chloroplasts to the SnO2 optically transparent electrode. Water photolysis for producing hydrogen by a photoelectrochemical cell using the immobilized chloroplasts film electrode was successfully achieved. A smooth platinum electrode was used as a cathode to produce hydrogen. The pH and temperature of the anolyte were kept at 7.8 and 25°C. Optimizations of the concentrations of methyl viologen and chlorophyll in the immobilized chloroplast film were studied. The optimum thickness for the immobilized chloroplast film was about 0.8 mm. The immobilized chloroplasts had higher storage stability than that of isolated chloroplasts and they retained more than 50% of the initial activities of photosystem I and photosystem II after 10 days when they were stored at 4°C in the dark. It was conceived from the relationship between the photocurrent and the photosystem I and II activities that the main cause for the decrease in the photocurrent was the photochemical inactivation of photosystem II.  相似文献   

2.
Inducer, inhibitor, and mutant studies on three hydrogenase activities of Rhodospirillum rubrum indicate that they are mediated by three distinct hydrogenase enzymes. Uptake hydrogenase mediates H2 uptake to an unknown physiological acceptor or methylene blue and is maximally synthesized during autotrophic growth in light. Formate-linked hydrogenase is synthesized primarily during growth in darkness or when light becomes limiting, and links formate oxidation to H2 production. Carbon-monoxide-linked hydrogenase is induced whenever CO is present and couples CO oxidation to H2 evolution. The enzymes can be expressed singly or conjointly depending on growth conditions, and the inhibitor or inducer added. All three hydrogenases can use methyl viologen as the mediator for both the H2 evolution and H2 uptake reactions while displaying distinct pH optima, reversibility, and sensitivity to C2H2 gas. Yet, we present evidence that the CO-linked hydrogenase, unlike the uptake hydrogenase, does not link to methylene blue as the electron acceptor. These differences allow conditions to be established to quantitatively assay each hydrogenase independently of the others both in vivo and in vitro.  相似文献   

3.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

4.
The steady-state rate of CO2-dependent O2 evolution by Anabaena variabilis cells in response to illumination was established after a lag phase. The lag phase was shortened (1) in cells incubated with glucose as an oxidizable substrate and (2) upon an increase in light intensity. The lag phase was absent during electron transfer from H2O to p-benzoquinone (in combination with ferricyanide) involving Photosystem II. A lag was observed during electron transfer from H2O to methyl viologen involving Photosystems II and I, but not for electron transfer from N,N,N',N'-tetramethyl-p-phenylenediamine (in combination with ascorbate) to methyl viologen involving only Photosystem I. The lag phases of the light-induced H2O --> CO2 and H2O --> methyl viologen electron transfer reactions showed the same temperature dependences at 10-30 degrees C. The lag was prevented by 3-(3,4-dichlorophenyl)-1,1-dimethylurea at concentrations that caused partial inhibition of photosynthetic O2 evolution. Retardation of cell respiration by a combination of CN- and benzylhydroxamate shortened the lag phase of the H2O --> methyl viologen electron transfer. It is concluded that the lag phase is associated with the electron transfer step between Photosystem II and Photosystem I common for the photosynthetic and respiratory chains and is due to the stimulation of cell respiration during the initial period of illumination as a consequence of an increase in the reduced plastoquinone pool and to subsequent retardation of respiration resulting from the transition of the electron transfer chain to the competitive pathway involving Photosystem I.  相似文献   

5.
The bioelectrochemical reduction of nitrate in the presence of various mediators including methyl viologen and azure A was studied using a 3-electrode voltammetric system. The catalytic potential for the reduction of the mediators was observed in the reactor, which for methyl viologen and azure A were −0.74 V and −0.32 V, respectively, with respect to the potential of Ag/AgCl reference electrode. This potential was then applied to a working electrode to reduce each mediator for enzymatic nitrate reduction. Nitrite, the product of the reaction, was measured to observe the enzymatic nitrate reduction in the reaction media. Methyl viologen was observed as the most efficient mediator among those tested, while azure A showed the highest electron efficiency at the intrinsic reduction potential when the mediated enzyme reactions were carried out with the freely solubilized mediator. The electron transfer of azure A with respect to time was due to the adhesion of azure A to the hydrophilic surface during the reduction. In addition, the use of the adsorbed mediator on conductive activated carbon was proposed to inhibit the change in the electron transfer rate during the reaction by maintaining a constant mediator concentration and active surface area of the electrode. Azure A showed better than nitrite formation than methyl viologen when used with activated carbon.  相似文献   

6.
Direct electron transfer of glucose oxidase promoted by carbon nanotubes   总被引:11,自引:0,他引:11  
A stable suspension of carbon nanotubes (CNT) was obtained by dispersing the CNT in a solution of surfactant, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant). CNT (dispersed in the solution of 0.1% CTAB) has promotion effects on the direct electron transfer of glucose oxidase (GOx), which was immobilized onto the surface of CNT. The direct electron transfer rate of GOx was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of GOx, with a midpoint potential of about -0.466 V (vs SCE (saturated calomel electrode)) in the phosphate buffer solution (PBS, pH 6.9). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of midpoint potential (E1/2) were estimated. The dependence of E1/2 on solution pH indicated that the direct electron transfer reaction of GOx is a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOx retained its bioelectrocatalytic activity for the oxidation of glucose, suggesting that the electrode may find use in biosensors (for example, it may be used as a bioanode in biofuel cells). The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

7.
Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H(2)ase) that has been implicated in H(2) production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H(2)ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H(2)ase were cloned and then expressed in an MR-1 mutant without hyaB and hydA genes. Expression of recombinant MR-1 [NiFe]-H(2)ase in trans restored the mutant's ability to produce H(2) at 37% of that for the wild type. Following purification, MR-1 [NiFe]-H(2)ase coupled H(2) oxidation to reduction of Tc(VII)O(4)(-) and methyl viologen. Change of the buffers used affected MR-1 [NiFe]-H(2)ase-mediated reduction of Tc(VII)O(4)(-) but not methyl viologen. Under the conditions tested, all Tc(VII)O(4)(-) used was reduced in Tris buffer, while in HEPES buffer, only 20% of Tc(VII)O(4)(-) was reduced. The reduced products were soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc precipitates reduced in HEPES buffer were aggregates of crystallites with diameters of ~5 nm. Measurements with X-ray absorption near-edge spectroscopy revealed that the reduction products were a mixture of Tc(IV) and Tc(V) in Tris buffer but only Tc(IV) in HEPES buffer. Measurements with extended X-ray adsorption fine structure showed that while the Tc bonding environment in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O(2)·nH(2)O, which was also the product of Tc(VII)O(4)(-) reduction by MR-1 cells. These results shows for the first time that MR-1 [NiFe]-H(2)ase catalyzes Tc(VII)O(4)(-) reduction directly by coupling to H(2) oxidation.  相似文献   

8.
《BBA》2022,1863(7):148579
Molybdenum-dependent enzymes that can reduce N-hydroxylated substrates (e.g. N-hydroxyl-purines, amidoximes) are found in bacteria, plants and vertebrates. They are involved in the conversion of a wide range of N-hydroxylated organic compounds into their corresponding amines, and utilize various redox proteins (cytochrome b5, cyt b5 reductase, flavin reductase) to deliver reducing equivalents to the catalytic centre. Here we present catalytic electrochemistry of the bacterial enzyme YcbX from Escherichia coli utilizing the synthetic electron transfer mediator methyl viologen (MV2+). The electrochemically reduced form (MV+.) acts as an effective electron donor for YcbX. To immobilize YcbX on a glassy carbon electrode, a facile protein crosslinking approach was used with the crosslinker glutaraldehyde (GTA). The YcbX-modified electrode showed a catalytic response for the reduction of a broad range of N-hydroxylated substrates. The catalytic activity of YcbX was examined at different pH values exhibiting an optimum at pH 7.5 and a bell-shaped pH profile with deactivation through deprotonation (pKa1 9.1) or protonation (pKa2 6.1). Electrochemical simulation was employed to obtain new biochemical data for YcbX, in its reaction with methyl viologen and the organic substrates 6-N-hydroxylaminopurine (6-HAP) and benzamidoxime (BA).  相似文献   

9.
通过将微藻细胞固定在平面多孔碳纸上,制备微藻光电极,并在三电极体系电解液中加入电子介体进行测试,可产生与光照同步的光电流响应。考察了不同固定化方法、不同微藻及不同电子介体的光电流响应,结果表明硅溶胶-凝胶法制备的光电极光电流响应最佳,且对于亚心形四爿藻、金藻、莱茵衣藻、蛋白核小球藻、聚球藻等 5 种微藻都适用,表明该制备方法对不同微藻具有较好的通用性。电子介体的研究表明苯醌及其衍生物由于氧还电位较高,具有较好的阳极光电流响应特性,而甲基紫精氧还电位较低,具有较好的阴极光电流响应。  相似文献   

10.
Peguin  S.  Delorme  P.  Goma  G.  Soucaille  P. 《Biotechnology letters》1994,16(3):269-274
Summary Batch cultures of Clostridium acetobutylicum at controlled pH values of 5 and 5.5 were carried out in a three-electrode potentiometric system with methyl viologen (1 mM) as electron carrier. Although an irreversible loss of methyl viologen at the electrode surface was observed, a significant increase in alcohol yield was obtained. In comparison to control fermentation with or without methyl viologen addition, the butanol yield improvements were respectively of 7 or 51% at pH 5, and 56 or 467% at pH 5.5.  相似文献   

11.
Whole cells of Alcaligenes eutrophus (as well as isolated P. oxalaticus formate dehydrogenase and A. eutrophus hydrogenase coupled via NAD(+) or methyl viologen) have been shown to produce H(2) from formic acid. Immobilization of the cells in kappacarrageenan gel greatly enhances their stability at room temperature. The rate of hydrogen production catalyzed by immobilized A. eutrophus has been studied as a function of the concentrations of the cells and formate and also pH. An inhibition by high concentrations of formate has been found. Immobilized cells were also capable of synthesizingformate from H(2) and bicarbonate. Yields of formate up to 30% have been obtained. The catalytic efficiency of immobilized A. eutrophus cells was compared with that of palladium adsorbed on activated carbon.  相似文献   

12.
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H(2)O(2). The pH effect on amperometric response to H(2)O(2) was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.  相似文献   

13.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

14.
Extracts of aerobically, CO-autotrophically grown cells of Pseudomonas carboxydovorans were shown to catalyze the oxidation of CO to CO(2) in the presence of methylene blue, pyocyanine, thionine, phenazine methosulfate, or toluylene blue under strictly anaerobic conditions. Viologen dyes and NAD(P)(+) were ineffective as electron acceptors. The same extracts catalyzed the oxidation of formate and of hydrogen gas; the spectrum of electron acceptors was identical for the three substrates, CO, formate, and H(2). The CO- and the formate-oxidizing activities were found to be soluble enzymes, whereas hydrogenase was membrane bound exclusively. The rates of oxidation of CO, formate, and H(2) were measured spectrophotometrically following the reduction of methylene blue. The rate of carbon monoxide oxidation followed simple Michaelis-Menten kinetics; the apparent K(m) for CO was 45 muM. The reaction rate was maximal at pH 7.0, and the temperature dependence followed the Arrhenius equation with an activation energy (DeltaH(0)) of 35.9 kJ/mol (8.6 kcal/mol). Neither free formate nor hydrogen gas is an intermediate of the CO oxidation reaction. This conclusion is based on the differential sensitivity of the activities of formate dehydrogenase, hydrogenase, and CO dehydrogenase to heat, hypophosphite, chlorate, cyanide, azide, and fluoride as well as on the failure to trap free formate or hydrogen gas in coupled optical assays. These results support the following equation for CO oxidation in P. carboxydovorans: CO + H(2)O --> CO(2) + 2 H(+) + 2e(-) The CO-oxidizing activity of P. carboxydovorans differed from that of Clostridium pasteurianum by not reducing viologen dyes and by a pH optimum curve that did not show an inflection point.  相似文献   

15.
An amperometric dimethyl sulfoxide (DMSO) sensor was constructed based on DMSO reductase (DMSO-R). DMSO-R from Rhodobacter sphaeroides f. sp. denitrificans was immobilized by BSA-glutaraldehyde cross-linking at the surface of a glassy carbon electrode. Mediators were added to the sample solution in a free form. Several mediators (methyl viologen (MV), benzyl viologen (BV), neutral red (NR), safranin T (ST), FMN, phenazine methosulfate (PMS)), which can donate electrons to DMSO-R, were examined with the DMSO-R immobilized electrode. Among them MV was selected as a model mediator because of its wide linear response range and fast response time. The response current was effected by the measurement temperature but hardly effected by the pH of the sample solution. The response current was increased with the measurement temperature up to 50 degrees C. A response current was observed at 1 microM DMSO and the response time was 20 s under the optimum conditions. The response was observed for approximately 2 weeks. By the reduction of Schiff base in the cross-linking layer the response range became narrower but most of the response current was retained at 300 microM of DMSO for more than 5 weeks.  相似文献   

16.
Dai Z  Xu X  Ju H 《Analytical biochemistry》2004,332(1):23-31
The direct electrochemistry of myoglobin (Mb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Mb and HMS was investigated by using Fourier transfer infrared spectroscopy, nitrogen adsorption isotherm, and cyclic voltammetry. Two couples of redox peaks corresponding to Fe(III) to Fe(II) conversion of the Mb intercalated in the mesopores and adsorbed on the surface of the HMS were observed with the formal potentials of -0.167 and -0.029V in 0.1M, pH 7.0, phosphate buffer solution, respectively. The electrode reaction showed a surface-controlled process with one proton transfer. The immobilized Mb displayed good electrocatalytic responses to the reduction of both hydrogen peroxide (H(2)O(2)) and nitrite (NO(2)(-)), which were used to develop novel sensors for H(2)O(2) and NO(2)(-). The apparent Michaelis-Menten constants of the immobilized Mb for H(2)O(2) and NO(2)(-) were 0.065 and 0.72mM, respectively, showing good affinity. Under optimal conditions, the sensors could be used for the determinations of H(2)O(2) ranging from 4.0 to 124microM and NO(2)(-) ranging from 8.0 to 216microM. The detection limits were 6.2x10(-8) and 8.0x10(-7)M at 3 sigma, respectively. The HMS provided a novel matrix for protein immobilization and the construction of biosensors via the direct electron transfer of immobilized protein.  相似文献   

17.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

18.
Horseradish peroxidase (HRP) was immobilized on carboxylated multi-wall carbon nanotubes in the presence of a coupling reagent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The immobilized HRP maintained its oxidative activity for guaiacol over a broad range of pH values (4–9). An electrode of graphite rod, 6 mm diam. was fabricated using the immobilized HRP. Cyclic voltammetry of the enzyme electrode confirmed electron transfer between the immobilized HRP and the electrode in the presence of H2O2 but without an added mediator or a reducing substrate.  相似文献   

19.
Rhodopseudomonas gelatinosa 1 grew as an anaerobic facultative methylotroph with carbon monoxide as the sole carbon and energy source. Carbon from CO was assimilated into cell material via the ribulose 1,5-bisphosphate carboxylase cycle. The CO oxidation system in R. gelatinosa was induced during growth with the gas substrate. Light-grown cells did not oxidize CO. Surprisingly, when strain 1 cells grown in the dark with CO were transferred to growth with both CO and light, they continued to use CO and then photometabolized after the CO gas flow was stopped. This change in the energy-yielding substrate resulted in a diauxic growth response. The use of CO in preference to light energy forms the basis of a system in the cells that controls photosynthetic differentiation. CO oxidation was assayed as CO-methyl viologen oxidoreductase. Methyl viologen reduction only occurred with CO; the dye was not reduced with other C1 compounds. In vitro methyl viologen was reduced best at 24 degrees C and at pH values above 8.5. Whole cells exhibited a Km of 12.5 microM for CO and a Vmax of 3,800 nmol of CO oxidized per mg of protein per min. This was a low-potential oxidation reaction that readily reduced the viologen dye triquat (1,1'-trimethylene-2,2'-dipyridilium dibromide) (E degrees' = -548 mV).  相似文献   

20.
The direct electrochemistry of hemoglobin (Hb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Hb and the HMS was investigated using UV-Vis spectroscopy, FT-IR, and electrochemical methods. The direct electron transfer of the immobilized Hb exhibited two couples of redox peaks with the formal potentials of -0.037 and -0.232 V in 0.1 M (pH 7.0) PBS, respectively, which corresponded to its two immobilized states. The electrode reactions showed a surface-controlled process with a single proton transfer at the scan rate range from 20 to 200 mV/s. The immobilized Hb retained its biological activity well and displayed an excellent response to the reduction of both hydrogen peroxide (H2O2) and nitrate (NO2-). Its apparent Michaelis-Menten constants for H2O2 and NO2- were 12.3 and 49.3 microM, respectively, showing a good affinity. Based on the immobilization of Hb on the HMS and its direct electrochemistry, two novel biosensors for H2O2 and NO2- were presented. Under optimal conditions, the sensors could be used for the determination of H2O2 ranging from 0.4 to 6.0 microM and NO2- ranging from 0.2 to 3.8 microM. The detection limits were 1.86 x 10(-9) M and 6.11 x 10(-7) M at 3sigma, respectively. HMS provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号