首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The goals of this study were to: (1) compare water conductivity and pH as proxy measures of mineral richness in relation to mollusc assemblages in fens, (2) examine the patterns of mollusc species richness along the gradient of mineral richness based on these factors, (3) model species–response curves and analyse calcicole–calcifuge behaviour of molluscs, and (4) compare the results with those from other studies concerning non‐marine mollusc ecology. Location Altogether, 135 treeless spring fen sites were sampled within the area of the Western Carpathians (east Czech Republic, north‐west Slovakia and south Poland; overall extent of study area was 12,000 km2). Methods Mollusc communities were recorded quantitatively from a homogeneous area of 16 m2. Water conductivity and pH were measured in the field. The patterns of local species diversity along selected gradients, and species–response curves, were modelled using generalized linear models (GLM) and generalized additive models (GAM), both using the Poisson distribution. Results When the most acid sites (practically free of molluscs) were excluded, conductivity expressed the sites’ mineral richness and base saturation within the entire gradient, in contrast to pH. In the base‐rich sites, pH did not correlate with mineral richness. A unimodal response of local species diversity to mineral richness (expressed as conductivity) was found. In the extremely mineral‐rich, tufa‐forming sites (conductivity > 600 μS cm?1) a decrease in species diversity was encountered. Response curves of the most common species showed clear differentiation of their niches. Significant models of either unimodal or monotonic form were fitted for 18 of the 30 species analysed. Species showed five types of calcicole–calcifuge behaviour: (1) a decreasing monotonic response curve and a preference for the really acid sites; (2) a skewed unimodal response curve with the optimum shifted towards the slightly acid sites; (3) a symmetrical unimodal model response curve with the optimum in the base‐rich sites, with no or slight tufa precipitation; (4) a skewed unimodal response curve but with the optimum shifted to the more mineral‐rich sites; and (5) an increasingly monotonic response curve, the optimum in the extremely base‐rich sites with strong tufa precipitation. Main conclusions Conductivity is the only reliable proxy measure of mineral richness across the entire gradient, within the confines of this study. This information is of great ecological significance in studies of fen mollusc communities. Species richness does not increase with increasing mineral richness along the entire gradient: only a few species are able to dwell in the extremely base‐rich sites. The five types of calcicole–calcifuge behaviour seen in species living in fens have a wider application: data published so far suggest they are also applicable to mollusc communities in other habitats.  相似文献   

2.
1. Effects of the frequency and duration of flooding on the structural and functional characteristics of riparian vegetation were studied at four sites (n = 80, 50 × 50 cm, plots) along medium‐sized naturally meandering lowland streams. Special focus was on rich fens, which – due to their high species richness – are of high priority in nature conservation. 2. Reed beds, rich fens and meadows were all regularly flooded during the 20‐year study period, with a higher frequency in reed bed areas than in rich fen and meadow areas. In rich fens, species richness was higher in low frequency flooded areas (≤3 year?1) than in areas with a high frequency of flooding (>3 year?1) or no flooding, whereas species richness in reed beds and meadows was unaffected by flood frequency. 3. The percentage of stress‐tolerant species was higher in low intensity flooded rich fen areas than in high intensity and non‐flooded areas, indicating that the higher species richness in low frequency flooded rich fens was caused by competitive release. We found no indication that increased productivity was associated with high flooding frequencies. 4. We conclude that the restoration of morphological features in stream channels to increase the flooding regime can be beneficial for protected vegetation within riparian areas, but also that groundwater discharge thresholds and critical levels for protected vegetation should be identified and considered when introducing stream ecosystem restoration plans.  相似文献   

3.
Nakamura T  Nakamura M 《Oecologia》2012,168(4):913-921
Although the productivity and nitrogen (N)-use traits of mire plants differ dramatically between fens and bogs, soil N richness does not necessarily differ, whereas the soil–water pH is distinctly lower in bogs than in fens. The ecophysiological mechanisms underlying these relations are unclear. To assess the relative availability of N forms in relation to soil–water pH, we focused on the net N uptake rate per unit root weight (NNUR), glutamine synthetase activity and nitrate reductase activity, and performed reciprocal transplant experiments with the seedlings of fen (Carex lyngbyei) and bog (C. middendorffii) sedge species in intact habitat sites. The soil–water pH was clearly lower at the bog site, but the NH4 +, NO3 or dissolved organic-N concentrations did not differ between the fen and bog sites. The activity of both enzymes for inorganic-N assimilation did not differ among the sites and species. However, the fen species grown at bog sites showed a drastic decrease in the NNUR, suggesting a suppression of organic-N uptake. The bog species showed no NNUR difference between the sites. These results indicate that inorganic-N availability does not differ between the two habitats, but organic-N availability is lowered in a low-pH bog, particularly in the case of fen species. Therefore, the relative availability of N forms shows species-specific variations that depend on the differences in the soil–water pH of root zone, even at similar N richness, which would play a key role in plant distribution strategies in relation to the fen-bog gradient.  相似文献   

4.
The aim of the study was to assess the effects of fen rewetting on carabid beetle and vascular plant assemblages within riverine fens along the river Peene in north‐eastern Germany. Drained (silage grassland), rewetted (restored formerly drained silage grassland), and near‐natural (fairly pristine) stands were compared. Eighty‐four beetle species (7,267 individuals) and 135 plant species were recorded. The richness of vascular plant species and the number of endangered species were highest on near‐natural fens. Fourteen years of rewetting did not increase plant species numbers compared with drained fens. For carabid beetles, however, species richness and the number of stenotopic species were highest on rewetted fens. Rewetting caused the replacement of generalist carabids by wetland specialists, but did not provide suitable habitat for specialist fen carabids or for plant species of oligo‐ or mesotrophic fen communities. Therefore, raising the water table on fens with nutrient‐rich, degraded peat was not sufficient for restoring species assemblages of intact fens, although water level was the most important environmental factor separating species assemblages. Our study illustrated that insects and plants may respond differentially to restoration, stressing the need to consider different taxa when assessing the efficiency of fen restoration. Furthermore, species assemblages of intact fens could not be restored within 14 years, highlighting the importance of conserving pristine habitat.  相似文献   

5.
The relationships between vegetation components, surface water chemistry and peat chemistry from 23 fens in boreal Alberta, Canada, substantiate important differences along the poor to rich fen gradient. Each of the three fen types have their own characteristic species. The extreme-rich fens are characterized by Calliergon trifarium, Drepanocladus revolvens, Scirpus hudsonianus, S. cespitosus, Scorpidium scorpioides, and Tofieldia glutinosa. Moderate-rich fens are characterized by Brachythecium mildeanum, Carex diandra, Drepanocladus vernicosus, D. aduncus, and D. polycarpus. Poor fens are characterized by Carex pauciflora, Drepanocladus exannulatus, Sphagnum angustifolium, S. jensenii, and S. majus. Moderate-rich fens have fewer species in common with poor fens than with extreme-rich fens, while species richness is highest in the moderate-rich fens and lowest in poor fens. Variation in vascular plant occurrence appears to be more associated with nutrient levels, while bryophytes are more affected by changes in acidity and mineral elements. Based on chemical criteria, the three fen types are clearly separated by surface water pH, calcium, magnesium, and conductivity, but are less clearly differentiated by the nitrogen and phosphorus components of the surface waters. Moderate-rich fens are chemically variable both temporally and spatially, whereas poor fens and extreme-rich fens are more stable ecosystems. Whereas components of alkalinity-acidity are the most important factors that distinguish the three fen types in western Canada, nutrient concentrations in the surface waters generally do not differ appreciably in the three fen types.  相似文献   

6.

Aim

We present the first continental‐scale study of factors controlling the species richness of groundwater‐fed fens, comparing land snails, vascular plants and bryophytes. We separately analyse two ecologically distinct groups differing in conservation value and colonization/extinction dynamics, that is habitat specialists, and matrix‐derived species. Considering the island‐like nature of fen habitats, we hypothesize larger differences in the species richness–environment relationships between habitat specialists and matrix‐derived species than among the taxonomic entities.

Location

Seven European regions

Methods

Richness was counted at 373 well‐preserved fens with undisturbed hydrology using the same protocols. Relationships between the species richness and water pH, waterlogging, climate and geography were explored by GLMs.

Results

Land snail richness responded mainly to water pH, regardless of habitat specialization. Richness of vascular plant and bryophyte specialists was strongly driven by geographical location of the sites, while that of matrix‐derived species was driven by waterlogging and water pH. The richness of matrix‐derived species of all taxa significantly increased with the decreasing waterlogging. Residual richness of specialists of all taxa decreased towards southern Europe.

Main conclusions

In island‐like terrestrial habitats, differences between specialists and matrix‐derived species may outweigh differences among taxa, unless there is one strong physiological determinant of species richness such as pH in land snails. The richness of specialists seems to be strongly related to difficult‐to‐measure regional factors such as historical frequency and connectivity of fen habitats. The richness of matrix‐derived species depends mainly on local conditions, such as pH and waterlogging, determining the degree of habitat contrast against the surrounding matrix. Sufficient waterlogging maintains a high representation of habitat specialists in fen communities, and disturbance of water regime may cause the increase in the number of matrix‐derived species and potentially trigger successional shifts towards non‐fen communities.
  相似文献   

7.
Ecological patterns of mollusc assemblages and vegetation in relation to water chemistry, water regime, nutrient availability and climate were studied in eastern Polish lowland fens. Our goal was to examine if major compositional changes differ for molluscs and vegetation under the joint influence of multiple ecological gradients. Altogether 32 fen sites were investigated in 2010–2011, and analyzed using metric multidimensional scaling, cluster analysis and generalized additive models. Two major gradients driving the differences in mollusc species composition were revealed. The main direction of compositional changes was associated with the water table gradient, governing a species turnover from inundated and strongly water-logged sites occupied mostly by aquatic mollusc species, to moderately wet sites with the predominance of fen and meadow species. The second most important gradient for molluscs was that of mineral richness. For vegetation, three major gradients explained the changes in species composition. The highest importance was assigned to the nitrogen-to-phosphorus availability gradient (defined as a shift from N-limited to P-limited vegetation), followed by the water table gradient, and the mineral richness gradient. Our results demonstrate that the impact of mineral richness gradient, which has been often reported as the major determinant of compositional changes of fen molluscs and vegetation, can be exceeded by other ecological gradients of comparable variation. We also document for the first time that the main species turnover of fen vegetation is not accompanied by the analogous change in species composition of mollusc assemblages, due to a different sensitivity of these taxa to particular environmental factors (i.e. water level dynamics and type of nutrient limitation).  相似文献   

8.
Spring fens are isolated treeless wetlands of a high conservation value. Their environmental conditions are strongly related to their groundwater chemistry, which controls species distribution within various groups of organisms. Clitellates, a dominant group of non-insect aquatic fauna, however, have never been studied in these habitats. It is unclear from previous studies to what extent the distribution of aquatic non-insect taxa reflects water chemistry rather than the substrate structure. We studied 34 spring fens sampled in 17 isolated sites in the Western Carpathian Mountains to determine mainly the effects of water chemistry and substrate structure on variation in species richness and composition of clitellate assemblages as examples of the non-insect fauna. A total of 34 taxa were found, with 3–15 taxa collected per sample. Species richness was negatively correlated with water mineral concentration measured as water electric conductivity (r = −0.57, P < 0.001) and positively with TOC (r = 0.60, P < 0.001). Surprisingly, the lowest number of taxa was found in calcareous fens and richness increased towards Sphagnum-fens. There was a species turnover related to changes in mineral richness and substrate characters. The main change of species composition was promoted by changes in substrate structure. The second gradient of species composition was linked with the amount of nutrients, moisture, and dominance of sphagna, and was associated with an increase of eurytopic species in fens with high nutrient availability. It was difficult to separate the effects of water chemistry and substrate on clitellate species distributions owing to the fact that variation in tufa precipitation and vegetation was driven by water chemistry changes. This study presented the first quantitative data on fen clitellate assemblages, which appear to have an unusual pattern of species richness. In contrast to plants and molluscs, calcareous fens appeared to be a harsh environment for clitellate species. Only few specialized species, mainly Trichodrilus strandi, were able to establish viable populations. The significant effect of water chemistry on clitellate distribution patterns raises questions about the direct influence of water chemistry on non-insect aquatic taxa, which have previously been considered to be mostly determined by substrate characteristics.  相似文献   

9.
Floating fens are species‐rich succession stages in fen areas in the Netherlands. Many of these fens are deteriorating due to acidification; Sphagnum species and Polytrichum commune build 10–25 cm thick moss carpets, and the species diversity decreases. Earlier experiments in wet ecosystems indicate that successful restoration of circum‐neutral and mesotrophic conditions requires a combination of hydrological measures and sod removal. In an acidified fen recharged by rainwater in the nature reserve Ilperveld (The Netherlands), a ditch/trench system was dug for the purpose of creating a run‐off channel for acid rainwater in wet periods and to enable circum‐neutral surface water to enter the fen in dry periods. Moreover, the sod was removed in part of the fen. Ditch/trench creation or sod cutting had no effect individually, but a combination of the two measures led to a change in the abiotic conditions (higher pH and Ca), and in turn to an increase of species‐richness and the reestablishment of a number of characteristic species. Reestablishment of rare vascular plant species and characteristic bryophytes might be a long‐term process because of incomplete recovery of site conditions and constraints in seed dispersal.  相似文献   

10.
Removal of shrubs and trees is an important management and restoration practice to promote openness and light‐dependent vegetation in fens, especially as tree cover is increasing in previously open wetlands. The effects of woody vegetation removal on target species have been poorly documented in wetlands up to now. In this study, I investigated the effect of tree and shrub removal (especially of Juniperus communis) on the target vegetation in a partly overgrown and degraded grazed rich fen after 6 years. I also tested whether additional intensified management by mowing could promote initial recovery. Shrub removal resulted in a rapid recovery of species‐rich fen vegetation such that after 6 years brown moss cover more than tripled and target species richness doubled and became similar to values of a reference area in a favorable conservation status. Additional mowing resulted in a much higher abundance of the target rich fen vascular plants. The reasons for the success at this site may be the proximity to well‐developed rich fen vegetation, presence of cattle that dispersed diaspores, and presence of bare, colonizable substrate. Thus, it may be more beneficial to restore and expand already existing sites in a partly favorable status than to restore severely deteriorated sites. Extensive management by woody vegetation removal may be an alternative method to maintain high conservation values of open mires and other wetlands, where grazing or mowing is not necessary or feasible to meet future needs in response to overgrowth caused by global warming.  相似文献   

11.
We investigated the effects of the abiotic environment, plant community composition and disturbance by fire on ant assemblages in two distinct habitat types in the Siskiyou Mountains in northern California and southern Oregon, USA. Sampling over 2 years in burned and unburned Darlingtonia fens and their adjacent upland forests, we found that the effects of disturbance by fire depended on habitat type. In forests, fire intensity predicted richness in ant assemblages in both years after the fire, and plant community composition predicted richness 2 years after the fire. No factors were associated with richness in the species‐poor fen ant assemblages. Species‐specific responses to both habitat type and disturbance by fire were idiosyncratic. Assemblage composition depended on habitat type, but not disturbance by fire, and the composition of each assemblage between years was more dissimilar in burned than unburned sites.  相似文献   

12.
We fill a gap in understanding wetland vegetation diversity and relationship with environmental determinants in Bulgarian high mountains. A total of 615 phytosociological samples were taken from springs, mires, wet meadows and tall-forb habitats throughout Bulgaria, of which 234 relevés are from mire and spring vegetation above timberline. The vegetation was classified by TWINSPAN and the resulting vegetation types were reproduced by the formal definitions using the combination of Cocktail species groups based on phi-coefficient of joint co-occurrence of the species. Nine vegetation types of springs and fens have been clearly delimited above the timberline. All vegetation types include Balkan endemic species, the representation of which varies. Fens generally harbour more Balkan endemics than do springs, with the exception of species-poor high-altitude Drepanocladetum exannulati. The gradient structure of the vegetation was revealed by DCA and by CCA with forward selection of environmental factors. The major determinants of vegetation variation strongly differ above and below the timberline and likewise between springs and fens. The base-richness gradient controls the floristic variation of Bulgarian submontane fens, whereas the complete data set including both submontane and subalpine fens is governed by the altitude gradient from lowland and basin fens to subalpine fens rich in Balkan endemics. When focusing on sites above the timberline only, the first DCA axis separates fens from springs without organic matter. The major species turnover in springs follows the variation in water pH and mineral content in water, whereas fen vegetation variation is primarily controlled by succession gradient of peat accumulation. Altitude remains an important factor in all cases. Weak correlation between water pH and conductivity was found. This correlation was even statistically insignificant in fens above the timberline. Water pH is not influenced by mineral richness in Bulgarian high mountains, since it is buffered by decomposition of organic matter in fens. In springs, pH reaches maximum values due to strong aeration caused by water flow. The plant species richness decreases significantly with increasing altitude. The increase of species richness towards circumneutral pH, often found in mires, was not confirmed in Bulgarian high mountains. The correlation between species richness and pH was significant only when arctic-alpine species and allied European high-mountain species were considered separately. The richness of boreal species was independent on pH. Some of them had their optima shifted to more acidic fens as compared to regions below the timberline. Our results suggest that subalpine spring and fen vegetation should be analysed separately with respect to vegetation-environment correlations. Separate analysis of fens below and above timberline is quite appropriate.  相似文献   

13.
14.
Environmental stress is the main cause of the decline of species diversity in low‐productive fen meadows in the Netherlands. Attempts to restore species diverse fen meadows e.g. by sod cutting frequently fail. We supposed that unsuccessful efforts are due to ignoring the impact of environmental stress on the performance of soil biota, which play a key role in N‐immobilization and keeping available‐N for primary production low. We investigated both pristine and degraded natural sites and successfully and unsuccessfully restored sites of poor and rich fen meadows. We determined plant species composition, soil chemical properties, N‐pools in soil biota, N‐mineralization rates, and N‐fluxes. In pristine rich and poor fen meadows, mineral‐N was poorly available for primary production due to a strong N‐immobilization by soil biota. Annual N‐immobilization fluxes exceeded by far the annual N‐harvest by primary production. N‐immobilization in pristine fens was higher than in degraded fens. In successfully restored rich fens, net N‐mineralization was lower and N‐immobilization higher than in the unsuccessful category. From our results, we derived the hypothesis that in degraded or in unsuccessfully restored fens the soils internal N‐balance shifted from N‐immobilization to net N‐mineralization, favoring biomass production but disadvantaging plant species diversity. N‐retention driven by an active N‐immobilizing soil biological community, is likely a decisive process for successful recovery of plant species diversity in low productive fen meadows. We recommend that restoration techniques should stimulate a functionally diverse soil fauna, as this may enhance the storage of available nutrients in the soil food web.  相似文献   

15.
Question: Why is bryophyte succession in eutrophicated fens faster than in natural fens? Location: Mineral‐rich fens in The Netherlands and NW Europe. Methods: Literature review on the ecology of four bryophyte species in various successional types as observed in Dutch fens. Results: Bryophyte succession in eutrophicated fens from the brown moss Calliergonella cuspidata to Sphagnum squarrosum is much faster than in natural fens with species shifts from Scorpidium scorpioides to Sphagnum subnitens. Under P‐poor conditions, the brown moss stage is stabilized as long as mineral‐rich water is supplied. This is because S. scorpioides is tolerant of rainwater, is a strong competitor and can counteract acidification to some extent while S. subnitens is intolerant to groundwater and has low growth rates and low acidification capacity. In contrast, the Sphagnum stage is stable after rapid succession from rich‐fen mosses under P‐rich conditions. Calliergonella cuspidata has suboptimal growth in rainwater, possibly due to ammonium toxicity, while the high growth rates of S. squarrosum in nutrient‐rich and highly acidic groundwater allow early establishment and rapid expansion. Conclusions: If measures to improve fen base status occur in environments of increased nutrient (P) availability, the management may not lead to the desired restoration of brown moss stages, but instead to rapid acidification by S. squarrosum.  相似文献   

16.
The habitat of the pleurocarpous moss Drepanocladus trifarius is commonly described as mineral‐rich wet fens. We sampled individual D. trifarius shoots at 214 pre‐defined randomly distributed spots in an area of ca 15 km2 in a sloping fen in central–western Sweden. We assessed the habitat variation of the sampling spots in this area by means of a multi‐variate analysis (DCA) based on the species identity of the ten shoots adjacent to D. trifarius, and by indicator values for light availability and substrate moisture, acidity, and nutrient availability of the associated species. Both approaches indicated that D. trifarius occurred in well lit and constantly moist, wet or submerged places. Most spots were weakly acid to sub‐neutral, but some spots had distinctly acid conditions. Generally the spots were nutrient‐poor, but a few were nutrient‐ rich. DCA revealed gradients from relatively wet, sub‐neutral to basic towards drier and more acid habitats, and from nutrient‐poor to ‐richer environments. The species obviously exhibits a broader than expected niche width with respect to substrate acidity and nutrients. We suggest that succession, disturbance, or climatic factors may explain the species’ occurrences in different habitats.  相似文献   

17.

Aim

To assess vegetation changes in montane fens and wet meadows and their causes over 38 years.

Location

Wetlands, Jura Mountains (Switzerland and France).

Methods

Plots were inventoried in 1974 and re‐located in 2012 (quasi‐permanent plots) on the basis of sketches to assess changes in plant communities. The 110 plots belonged to five phytosociological alliances, two in oligotrophic fens (Caricion davallianae, Caricion fuscae) and three in wet meadows (Calthion, Molinion, Filipendulion). Changes between surveys were assessed with NMDS, and changes in species richness, Simpson diversity, species cover and frequency and the causes of these changes were evaluated by comparing ecological indicator values.

Results

Changes in species composition varied between alliances, with a general trend towards more nutrient‐rich flora with less light at ground level. Species diversity declined, with a marked decreasing trend for the typical species of each alliance. These species were partly replaced by species belonging to nitrophilous and mesophilous grasslands. However, no trend towards drier conditions was detected in these wetlands. The largest changes, with an important colonization by nitrophilous species, occurred in the Swiss sites, where grazing was banned 25 years ago. As a result of floral shifts, many plots previously belonging to fens or wet mesotrophic meadows shifted to an alliance of the wet meadows, generally Filipendulion. Moreover, communities showed a slight trend towards more thermophilous flora.

Conclusions

The investigated wetlands in the Jura Mountains have suffered mainly from eutrophication due to land‐use abandonment and N deposition, with a loss of typical species. Areas with constant land use (grazing or mowing) showed less marked changes in species composition. The most important action to conserve these wetlands is to maintain or reintroduce the traditional practices of extensive mowing and livestock grazing in the wetlands, especially in areas where they were abandoned 25 years ago. This previous land‐use change was intended to improve fen conservation, but it was obviously the wrong measure for conservation purposes.  相似文献   

18.
Abstract. On the Vecht river plain (western Netherlands), small fens, remnants of a large mesotrophic wetland bordering a moraine, of 1 to 5 ha are found in a man-made matrix of lakes and pastures. The regional position of the fens, local position of sampling sites, composition of the vegetation and local hydrological variables were measured. Polders in the river plain produce a complex hydrology obscuring the regional zonation between moraine and river. Water supply and species composition are determined more by a site's regional than local position. High-productivity reedlands are abundant close to the river. Carex paniculata reedlands receive large amounts of river water, which gives their fen water a high K+ concentration. Low-productivity C. diandra fens and litter fens have their optimum closer to the moraine. C. diandra fens are fed mainly by inflowing nutrient-poor ground- or surface water; litter fens receive primarily rainwater. Nutrients in fen water and in peat are lowest in C. diandra and C. lasiocarpa fens, but do not differ significantly between the communities. In both, iron seems to be more important than calcium in reducing phosphate solubility. Iron richness in the C. diandra fens is caused by present inflows of ground- or surface water, while in C. lasiocarpa fens, which succeed the former, iron richness is the result of historical inflows.  相似文献   

19.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

20.
Abstract. Nitrogen, phosphorus and potassium were supplied to some Belgian fens of varying nutrient status and productivity. Plant growth in the lowest productive fen with a species-rich Caricion davallianae vegetation was strongly P-limited. N was ineffective when applied alone, but increased the effect of P-addition when applied together. Summer biomass and plant nutrient concentrations were monitored for four years, and showed partial recovery of nutrient limitation. In a more productive fen dominated by Carex lasiocarpa and in a fen meadow, nutrient limitation was less strong. N limited growth in the productive fen, and N and K were co-limiting in the fen meadow. The P-concentration in the productive fen vegetation showed a marked increase after P-fertilization, but it did not result in higher standing crop. The significance of P-limitation for the conservation of species rich low productive fens is discussed. P-limitation may be an essential feature in the conservation of low productive rich fens: because it is less mobile in the landscape than N and/or because it is an intrinsic property of this vegetation type. Plant nutrient concentrations and N:P-ratios may be used as an indication for the presence and type of nutrient limitation in the vegetation. We found N:P-ratios of 23 to 31 for a P-limited site and 8 to 15 in N-limited sites. This was in agreement with critical values from the literature: N:P > ca. 20 for P-limitation and N:P < 14 for N-limitation. Thus, this technique appears valid in the vegetation types that were studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号