首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microcirculation is the site of gas and nutrient exchange. Control of central or local signals acting on the myocytes, pericytes and endothelial cells within it, is essential for health. Due to technical problems of accessibility, the mechanisms controlling Ca2+ signalling and contractility of myocytes and pericytes in different sections of microvascular networks in situ have not been investigated. We aimed to investigate Ca2+ signalling and functional responses, in a microcirculatory network in situ. Using live confocal imaging of ureteric microvascular networks, we have studied the architecture, morphology, Ca2+ signalling and contractility of myocytes and pericytes. Ca2+ signals vary between distributing arcade and downstream transverse and precapillary arterioles, are modified by agonists, with sympathetic agonists being ineffective beyond transverse arterioles. In myocytes and pericytes, Ca2+ signals arise from Ca2+ release from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate-induced Ca2+ release and not via ryanodine receptors or Ca2+ entry into the cell. The responses in pericytes are less oscillatory, slower and longer-lasting than those in myocytes. Myocytes and pericytes are electrically coupled, transmitting Ca2+ signals between arteriolar and venular networks dependent on gap junctions and Ca2+ entry via L-type Ca2+ channels. Endothelial Ca2+ signalling inhibits intracellular Ca2+ oscillations in myocytes and pericytes via L-arginine/nitric oxide pathway and intercellular propagating Ca2+ signals via EDHF. Increases of Ca2+ in pericytes and myocytes constrict all vessels except capillaries. These data reveal the structural and signalling specializations allowing blood flow to be regulated by myocytes and pericytes.  相似文献   

2.
The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca2+ signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca2+ entry via L-type Ca2+ channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca2+ release. The latter signal is further amplified by Ca2+-induced Ca2+ release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca2+ release from acidic-like Ca2+ stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca2+-induced Ca2+ release via ryanodine receptors. Extracellularly applied LPI produces Ca2+-independent membrane depolarization, whereas the Ca2+ signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.  相似文献   

3.
It has been proposed that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce the risk of ventricular arrhythmias in post-MI patients. Abnormal Ca2+ handling has been implicated in the genesis of post-MI ventricular arrhythmias. Therefore, we tested the hypothesis that dietary n-3 PUFAs alter the vulnerability of ventricular myocytes to cellular arrhythmia by stabilizing intracellular Ca2+ cycling. To test this hypothesis, we used a canine model of post-MI ventricular fibrillation (VF) and assigned the animals to either placebo (1 g/day corn oil) or n-3 PUFAs (1-4 g/day) groups. Using Ca2+ imaging techniques, we examined the intracellular Ca2+ handling in myocytes isolated from post-MI hearts resistant (VF-) and susceptible (VF+) to VF. Frequency of occurrence of diastolic Ca2+ waves (DCWs) in VF+ myocytes from placebo group was significantly higher than in placebo-treated VF- myocytes. n-3 PUFA treatment did not decrease frequency of DCWs in VF+ myocytes. In contrast, VF- myocytes from the n-3 PUFA group had a significantly higher frequency of DCWs than myocytes from the placebo group. In addition, n-3 PUFA treatment increased beat-to-beat alterations in the amplitude of Ca2+ transients (Ca2+ alternans) in VF- myocytes. These n-3 PUFAs effects in VF- myocytes were associated with an increased Ca2+ spark frequency and reduced sarcoplasmic reticulum Ca2+ content, indicative of increased activity of ryanodine receptors. Thus, dietary n-3 PUFAs do not alleviate intracellular Ca2+ cycling remodeling in myocytes isolated from post-MI VF+ hearts. Furthermore, dietary n-3 PUFAs increase vulnerability of ventricular myocytes to cellular arrhythmia in post-MI VF- hearts by destabilizing intracellular Ca2+ handling.  相似文献   

4.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

5.
Recent studies have suggested that mitochondria may play important roles in the Ca2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca2+ flux can regulate the generation of Ca2+ waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca2+ (Cai 2+) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca2+ release and CaWs were induced in the presence of high (4 mM) external Ca2+ (Cao 2+). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai 2+ levels even after depletion of SR Ca2+ in the absence of Cao 2+ , suggesting Ca2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m) or Ru360 (a mitochondrial Ca2+ uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca2+ release and uptake exquisitely control the local Ca2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.  相似文献   

6.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The intracellular concentration of free Ca2+ also changes rhythmically in association with the rhythmic contraction of myocytes (Ca2+ oscillation). Both the contraction and Ca2+ oscillatory rhythms are synchronized among myocytes, and intercellular communication via gap junctions has been considered primarily responsible for the synchronization. However, a recent study has demonstrated that intercellular communication via extracellular ATP‐purinoceptor signaling is also involved in the intercellular synchronization of intracellular Ca2+ oscillation. In this study, we aim to elucidate whether the concentration of extracellular ATP changes cyclically and contributes to the intercellular synchronization of Ca2+ oscillation among myocytes. In almost all the cultured cardiac myocytes at four days in vitro (4 DIV), intracellular Ca2+ oscillations were synchronized with each other. The simultaneous measurement of the concentration of extracellular ATP and intracellular Ca2+ revealed the extracellular concentration of ATP actually oscillated concurrently with the intracellular Ca2+ oscillation. In addition, power spectrum and cross‐correlation analyses suggested that the treatment of cultured cardiac myocytes with suramin, a blocker of P2 purinoceptors, resulted in the asynchronization of Ca2+ oscillatory rhythms among cardiac myocytes. Treatment with suramin also resulted in a significant decrease in the amplitudes of the cyclic changes in both intracellular Ca2+ and extracellular ATP. Taken together, the present study demonstrated the possibility that the concentration of extracellular ATP changes cyclically in association with intracellular Ca2+, contributing to the intercellular synchronization of Ca2+ oscillation among cultured cardiac myocytes.  相似文献   

7.
Whereas Ca2+ signalling in ventricular cardiomyocytes is well described, much less is known regarding the Ca2+ signals within atrial cells. This is surprising given that atrial cardiomyocytes make an important contribution to the refilling of ventricles with blood, which enhances the subsequent ejection of blood from the heart. The dependence of cardiac function on the contribution of atria becomes increasingly important with age and exercise. Disruption of the rhythmic beating of atrial cardiomyocytes can lead to life-threatening conditions such as atrial fibrillation. Atrial and ventricular myocytes have many structural and functional similarities. However, one key structural difference, the lack of transverse tubules (“T-tubules”) in atrial myocytes, make these two cell types display vastly different calcium patterns in response to electrical excitation. The lack of T-tubules in atrial myocytes means that depolarisation provokes calcium signals that originate around the periphery of the cells. Under resting conditions, such Ca2+ signals do not propagate towards the centre of the atrial cells and so do not fully engage the contractile machinery. Consequently, contraction of atrial myocytes under resting conditions is modest. However, when atrial myocytes are stimulated with a positive inotropic agonist, such as isoproterenol, the peripheral Ca2+ signals trigger a global wave of Ca2+ that propagates in a centripetal manner into the cells. Enhanced centripetal movement of Ca2+ in atrial myocytes leads to increased contraction and a more substantial contribution to blood pumping. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

8.
Isolated adult cardiac ventricular myocytes have been a useful model for cardiovascular research for more than 20 years. With the recent advances in cellular physiology and transgenic techniques, direct measurement of isolated ventricular myocyte mechanics is becoming an increasingly important technique in cardiac physiology that provides fundamental information on excitation-contraction coupling of the heart, either in drug intervention or pathological states. The goal of this article is to describe the isolation of ventricular myocytes from both rats and mice, and the use of real-time beat-to-beat simultaneous recording of both myocyte contraction and intracellular Ca2+ transients. Published: December 11, 2001  相似文献   

9.
Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.  相似文献   

10.
Magnesium ions (Mg2+) play a fundamental role in cellular function, but the cellular dynamic changes of intracellular Mg2+ remain poorly delineated. The present study aims to clarify whether the concentration of intracellular Mg2+ possibly changes cyclically in association with rhythmic contraction and intracellular Ca2+ oscillation in cultured cardiac myocytes from neonatal rats. To do this, we performed a noise analysis of fluctuations in the concentration of intracellular Mg2+ in cardiac myocytes. The concentration was estimated by loading cells with either Mg‐fluo4/AM or KMG‐20/AM. Results revealed that the intensity of Mg‐fluo‐4 or KMG‐20 fluorescence fluctuated cyclically in association with the rhythmic contraction of cardiac myocytes. In addition, the simultaneous measurement of Fura2 and Mg‐fluo‐4 fluorescence revealed phase differences between the dynamics of the two signals, suggesting that the cyclic changes in the Mg‐fluo‐4 or KMG‐20 fluorescent intensity actually reflected the changes in intracellular Mg2+. The complete termination of spontaneous rhythmic contractions did not abolish Mg2+ oscillations, suggesting that the rhythmic fluctuations in intracellular Mg2+ did not result from mechanical movements. We suggest that the concentration of intracellular Mg2+ changes cyclically in association with spontaneous, cyclic changes in the concentration of intracellular Ca2+ of cardiac myocytes. A noise analysis of the fluctuation of subtle changes in fluorescence intensity could contribute to the elucidation of novel functional roles of Mg2+ in cells.  相似文献   

11.
We have investigated the effects of acute acidosis on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin (STZ)-induced diabetic rat. Shortening and intracellular Ca2+ were measured in electrically stimulated myocytes superfused with either normal Tyrode solution pH adjusted to either 7.4 (control solution) or 6.4 (acid solution). Experiments were performed at 35–36°C. At 8–12 weeks after treatment, the rats that received STZ had lower body and heart weights compared to controls, and blood glucose was characteristically increased. Contractile defects in myocytes from diabetic rat were characterized by prolonged time to peak shortening. Superfusion of myocytes from control and diabetic rats with acid solution caused a significant reduction in the amplitude of shortening; however, the magnitude of the response was not altered by STZ treatment. Acid solution also caused significant and quantitatively similar reductions in the amplitude of Ca2+ transients in myocytes from control and diabetic rats. Effects of acute acidosis on amplitude of myocyte contraction and Ca2+ transient were not significantly altered by STZ treatment. Altered myofilament sensitivity to Ca2+ and altered mechanisms of sarcoplasmic reticulum Ca2+ transport might partly underlie the acidosis-evoked reduction in amplitude of shortening in myocytes from control and STZ-induced diabetic rat. (Mol Cell Biochem 261: 227–233, 2004)  相似文献   

12.
The cardiac Ca2+ release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca2+ sparks showed that Ca2+ sparks originated exclusively from RyR2 clusters. Ca2+ sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca2+ level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.  相似文献   

13.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy.  相似文献   

14.
Andersen-Tawil syndrome (ATS) is a rare inherited channelopathy. The cardiac phenotype in ATS is typified by a prominent U wave and ventricular arrhythmia. An effective treatment for this disease remains to be established. We reprogrammed somatic cells from three ATS patients to generate induced pluripotent stem cells (iPSCs). Multi-electrode arrays (MEAs) were used to record extracellular electrograms of iPSC-derived cardiomyocytes, revealing strong arrhythmic events in the ATS-iPSC-derived cardiomyocytes. Ca2+ imaging of cells loaded with the Ca2+ indicator Fluo-4 enabled us to examine intracellular Ca2+ handling properties, and we found a significantly higher incidence of irregular Ca2+ release in the ATS-iPSC-derived cardiomyocytes than in control-iPSC-derived cardiomyocytes. Drug testing using ATS-iPSC-derived cardiomyocytes further revealed that antiarrhythmic agent, flecainide, but not the sodium channel blocker, pilsicainide, significantly suppressed these irregular Ca2+ release and arrhythmic events, suggesting that flecainide's effect in these cardiac cells was not via sodium channels blocking. A reverse-mode Na+/Ca2+exchanger (NCX) inhibitor, KB-R7943, was also found to suppress the irregular Ca2+ release, and whole-cell voltage clamping of isolated guinea-pig cardiac ventricular myocytes confirmed that flecainide could directly affect the NCX current (INCX). ATS-iPSC-derived cardiomyocytes recapitulate abnormal electrophysiological phenotypes and flecainide suppresses the arrhythmic events through the modulation of INCX.  相似文献   

15.
We have previously shown that chronic treatment with propranolol had beneficial effects on heart function in rats during increasing-age in a gender-dependent manner. Herein, we hypothesize that propranolol would improve cardiac function in diabetic cardiomyopathy and investigated the benefits of chronic oral administration of propranolol on the parameters of Ca2+ signaling in the heart of streptozotocin-diabetic rats. Male diabetic rats received propranolol (25 mg/kg, daily) for 12 weeks, 1 week after diabetes induction. Treatment of the diabetic rats with propranolol did not produce a hypoglycaemic effect whereas it attenuated the increased cell size. Basal and β-agonist response levels of left ventricular developed pressure were significantly higher in propranolol-treated diabetic rats relative to untreated diabetics while left ventricular end diastolic pressure of the treated diabetics was comparable to the controls. Propranolol treatment normalized also the prolongation of the action potential in papillary muscles from the diabetic rat hearts. This treatment attenuated the parameters of Ca2+ transients, depressed Ca2+ loading of the sarcoplasmic reticulum, and of the basal intracellular Ca2+ level of diabetic cardiomyocytes. Furthermore, Western blot data indicated that the diabetes-induced alterations in the cardiac ryanodine receptor Ca2+ release channel’s hyperphosphorylation decreased the FKBP12.6 protein level. Also, the high phosphorylated levels of PKA and CaMKII were prevented with propranolol treatment. Chronic treatment with propranolol seems to prevent diabetes-related changes in heart function by controlling intracellular Ca2+ signaling and preventing the development of left ventricular remodeling in diabetic cardiomyopathy.  相似文献   

16.
In this study, we investigated the role of elevated sarcoplasmic reticulum (SR) Ca2+ leak through ryanodine receptors (RyR2s) in heart failure (HF)-related abnormalities of intracellular Ca2+ handling, using a canine model of chronic HF. The cytosolic Ca2+ transients were reduced in amplitude and slowed in duration in HF myocytes compared with control, changes paralleled by a dramatic reduction in the total SR Ca2+ content. Direct measurements of [Ca2+]SR in both intact and permeabilized cardiac myocytes demonstrated that SR luminal [Ca2+] is markedly lowered in HF, suggesting that alterations in Ca2+ transport rather than fractional SR volume reduction accounts for the diminished Ca2+ release capacity of SR in HF. SR Ca2+ ATPase (SERCA2)-mediated SR Ca2+ uptake rate was not significantly altered, and Na+/Ca2+ exchange activity was accelerated in HF myocytes. At the same time, SR Ca2+ leak, measured directly as a loss of [Ca2+]SR after inhibition of SERCA2 by thapsigargin, was markedly enhanced in HF myocytes. Moreover, the reduced [Ca2+]SR in HF myocytes could be nearly completely restored by the RyR2 channel blocker ruthenium red. The effects of HF on cytosolic and SR luminal Ca2+ signals could be reasonably well mimicked by the RyR2 channel agonist caffeine. Taken together, these results suggest that RyR2-mediated SR Ca2+ leak is a major factor in the abnormal intracellular Ca2+ handling that critically contributes to the reduced SR Ca2+ content of failing cardiomyocytes.  相似文献   

17.
Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCI2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm · s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10 -5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.  相似文献   

18.
General anaesthetics have previously been shown to have profound effects on myocardial function. Moreover, many patients suffering from diabetes mellitus are anaesthetised during surgery. This study investigated compromised functioning of cardiac myocytes from streptozotocin (STZ)-induced diabetic rats and the additive effects of halothane on these dysfunctions. Ventricular myocytes were isolated from 8 to 12 weeks STZ-treated rats. Contraction and intracellular free calcium concentration ([Ca2+] i ) were measured in electrically field-stimulated (1 Hz) fura-2-AM-loaded cells using a video-edge detection system and a fluorescence photometry system, respectively. L-type Ca2+ current was measured in whole cell, voltage-clamp mode. Halothane significantly (p < 0.01) depressed the amplitude and the time course of the Ca2+ transients in a similar manner in myocytes from control and STZ-treated rats. However, the effect of halothane on the amplitude of shortening and L-type Ca2+ current was more pronounced in myocytes from STZ-treated animals compared to age-matched controls. Myofilament sensitivity to Ca2+ was significantly (p < 0.01) increased in myocytes from STZ-treated rats compared to control. However, in the presence of halothane the myofilament sensitivity to Ca2+ was significantly (p < 0.05) reduced to a greater extent in myocytes from STZ-treated rats compared to controls. In conclusion, these results show that contractility, Ca2+ transport and myofilament sensitivity were all altered in myocytes from STZ-treated rats and these processes were further altered in the presence of halothane suggesting that hearts from STZ-induced diabetic rats are sensitive to halothane. (Mol Cell Biochem 261: 251–261, 2004)  相似文献   

19.
Cardiac microtubule stability is increased in the streptozotocin (STZ) model of type 1 diabetes. Here, we investigate the reason for increased microtubule stability, and the functional consequences of stable microtubule disruption. Ventricular myocytes were isolated from rats at 8–12 weeks after injection of STZ. A 10% increase in microtubule density, but no difference in the ratio of microtubule-associated protein 4 (MAP4) to tubulin was seen in myocytes from STZ rats. Functionally, STZ myocytes showed a tendency for reduced shortening and intracellular Ca2+ ([Ca2+] i ) transient amplitude, and a significant prolongation of time to peak (ttp) shortening and [Ca2+] i . Although microtubules in STZ myocytes were less sensitive to the microtubule disruptor nocodazole (NOC; 33 μM) than control myocytes, we only saw marked functional consequences of microtubule disruption by NOC in myocytes from diabetic animals. NOC increased shortening and [Ca2+] i transient amplitude in STZ myocytes by 45 and 24%, respectively (compared with 4 and 6% in controls). Likewise, NOC decreased ttp shortening and [Ca2+] i only in STZ myocytes, such that these parameters were no longer different between the two groups. In conclusion, stable microtubules in diabetes are not associated with an increase in MAP4, but are functionally relevant to cardiac dysfunction in diabetes, regulating both [Ca2+] i and shortening. Holly Shiels and Anthony O’Connell are equal first authorship.  相似文献   

20.
Li Q  O'Neill SC  Tao T  Li Y  Eisner D  Zhang H 《Biophysical journal》2012,102(7):1471-1482
This study investigated the mechanisms underlying the propagation of cytoplasmic calcium waves and the genesis of systolic Ca2+ alternans in cardiac myocytes lacking transverse tubules (t-tubules). These correspond to atrial cells of either small mammals or large mammals that have lost their t-tubules due to disease-induced structural remodeling (e.g., atrial fibrillation). A mathematical model was developed for a cluster of ryanodine receptors distributed on the cross section of a cell that was divided into 13 elements with a spatial resolution of 2 μm. Due to the absence of t-tubules, L-type Ca2+ channels were only located in the peripheral elements close to the cell-membrane surface and produced Ca2+ signals that propagated toward central elements by triggering successive Ca2+-induced Ca2+ release (CICR) via Ca2+ diffusion between adjacent elements. Under control conditions, the Ca2+ signals did not fully propagate to the central region of the cell. However, with modulation of several factors responsible for Ca2+ handling, such as the L-type Ca2+ channels (Ca2+ influx), SERCA pumps (sarcoplasmic reticulum (SR) Ca2+ uptake), and ryanodine receptors (SR Ca2+ release), Ca2+ wave propagation to the center of the cell could occur. These simulation results are consistent with previous experimental data from atrial cells of small mammals. The model further reveals that spatially functional heterogeneity in Ca2+ diffusion within the cell produced a steep relationship between the SR Ca2+ content and the cytoplasmic Ca2+ concentration. This played an important role in the genesis of Ca2+ alternans that were more obvious in central than in peripheral elements. Possible association between the occurrence of Ca2+ alternans and the model parameters of Ca2+ handling was comprehensively explored in a wide range of one- and two-parameter spaces. In addition, the model revealed a spontaneous second Ca2+ release in response to a single voltage stimulus pulse with SR Ca2+ overloading and augmented Ca2+ influx. This study provides what to our knowledge are new insights into the genesis of Ca2+ alternans and spontaneous second Ca2+ release in cardiac myocytes that lack t-tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号