首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this investigation was to elucidate the distribution and reactions of the enantiomers of thalidomide at their main site of biotransformation in vivo, i.e., in human blood. Plasma protein binding, erythrocyte: plasma distribution, and the kinetics of chiral inversion and degradation in buffer, plasma, and solutions of human serum albumin (HSA) were studied by means of a stereospecific HPLC assay. The enantiomers of thalidomide were not extensively bound to blood or plasma components. The geometric mean plasma protein binding was 55% and 66%, respectively, for (+)-(R)- and (−)-(S)-thalidomide. The corresponding geometric mean blood:plasma concentration ratios were 0.86 and 0.95 (at a haematocrit of 0.37) and erythrocyte:plasma distributions were 0.58 and 0.87. The rates of inversion and hydrolysis of the enantiomers increased with pH over the range 7.0–7.5. HSA, and to a lesser extent human plasma, catalysed the chiral inversion, but not the degradation, of (+)-(R)- and (−)-(S)-thalidomide. The addition of capric acid or preincubation of HSA with acetylsalicylic acid or physostigmine impaired the catalysis to varying extents. Correction for distribution in blood enhances previously observed differences between the pharmacokinetics of the enantiomers in vivo. The findings also support the notion that chiral inversion in vivo takes place mainly in the circulation and in albumin-rich extravascular spaces while hydrolysis occurs more uniformly in the body. In addition, the chiral inversion and hydrolysis of thalidomide apparently occur by several different mechanisms. Chirality 10:223228, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The fungus Cordyceps militaris has been previously shown to be capable of inverting the chirality of 2-phenylpropionic acid from its (R)-enantiomer to its (S)-antipode. The structure of this compound is similar to the 2-arylpropionic acid non-steroidal anti-inflammatory drugs, which have also been reported to undergo a similar chiral inversion process in mammals and man. We report here an investigation into the substrate specificity of the enzyme system present in C. militaris using pure enantiomers and racemates of ibuprofen and ketoprofen and racemates of indoprofen, suprofen, flurbiprofen, and fenoprofen and the structurally related compounds 2-phenylbutyric acid and 2-phenoxypropionic acid as substrates, using optimised incubation conditions developed for the inversion of 2-phenylpropionic acid. The results demonstrated that C. militaris is capable of inverting the chirality of all the compounds investigated, which suggests that the active sites of the enzymes are very flexible with regard to the molecular dimensions of the substrate molecule and the spatial occupation of the groups surrounding the chiral centre. Metabolism of all the substrates was observed but the rate of metabolism varied extensively depending on the substrate. Achiral HPLC analysis was used to detect any potential metabolites and the results suggested that the site of the metabolism appeared to be at the aliphatic side groups only, with the aromatic ring being left intact in all cases. These results suggest that C. militaris could be a valuable tool in the investigation of the prospective metabolic fates of new 2-arylpropionic acids during their development. Chirality 10:528–534, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The contamination of drug residues, including chiral ones, is not acceptable in earth's ecosystem. The dynamicity of enantiomers of thalidomide and its derivatives (3‐methyl thalidomide, 3‐ethyl thalidomide, and 3‐butyl thalidomide) was ascertained at supramolecular level in water‐sediment system using solid phase extraction (SPE) and stereoselective HPLC. Enantiomeric separation of these drugs was carried out on Ceramosphere RU‐2 (25 cm × 0.46 cm, particle size 50 μm) chiral column using pure ethanol (1.0 ml/min) as eluent at 230 nm detection. Retention times, capacity, separation, and resolution factors of the enantiomers of these drugs were in the range of 20.0–36.0, 2.08–3.93, 1.35–1.57, and 1.0–2.0 min, respectively. Percentage recoveries of the enantiomers in SPE were in the range of 90.0 to 95.0 in water‐sediment system. Langmuir and Freundlich model were best fitted for dynamic equilibrium concentrations at different experimental parameters. Thalidomide and its derivatives follow first‐order kinetics at dynamic equilibrium. The rate constants of chiral interconversions were 0.390 and 0.385 days?1 for S‐ and R‐enantiomers, respectively. The uptake of thalidomide by sediment is quite good and of endothermic nature indicating good self‐purification capacity of the nature for such toxic species. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Salicylidenimine palladium(II) complexes trans‐Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N‐substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes 1 , 2 , 3 , 4 , 5 , 6 with enantiomerically pure N‐substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N‐substituents in trans‐arrangement are inherently chiral. For dimers 7 , 8 , 9 , 10 , 11 different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex 12 two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes 13 and 14 atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex 15 [(Diop)Rh(PPh3)Cl)], a catalyst for enantioselective hydrogenation. In the lattice of 15 two diastereomers with the same (RC,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co‐crystallize, a rare phenomenon in stereochemistry. Chirality 25:663–667, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Atropisomerism is stereochemistry arising from restricted bond rotation that creates a chiral axis. Atropisomers are subject to time-dependent inversion of chirality via bond rotation, a property which in drug molecules introduces complexity and challenges for drug discovery and development processes. Greater recognition of the occurrence of atropisomerism and improved characterization techniques have helped medicinal chemists successfully advance atropisomeric drug molecules. This review provides recent examples of atropisomerism encountered in medicinal chemistry efforts and the strategies used to address the accompanying challenges.  相似文献   

7.
Coordination of a chiral substrate to (meso‐salen)cobalt(II) nitrate and subsequent oxidation generates a Co(III) complex exhibiting a strong chiroptical readout that is attributed to spontaneous substrate‐to‐ligand chirality imprinting. The characteristic circular dichroism (CD) response of the (salen)cobalt complex can be used for enantiomeric analysis of a variety of chiral substrates based on a simple CD measurement at low concentration and without additional purification steps. This chirality sensing approach has potential for high‐throughput enantiomeric excess (ee) screening applications and minimizes solvent waste production. Chirality 26:379–384, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Spiral galaxies are axisymmetric objects showing 2D chirality when projected onto a plane. Features in common with tetrahedral molecules are pointed out, in particular the existence of a preferred chiral modality for genetic galaxies as in amino acids and sugars. Environmental effects can influence the intrinsic chirality of originally isolated stellar systems so that a progressive loss of chirality is recognized in the Hubble morphological sequence of galaxies. © 2005 Wiley‐Liss, Inc. Chirality  相似文献   

9.
Many physiological processes show a high degree of stereoselectivity, including the metabolism of xenobiotics as catalyzed by cytochrome P450 enzymes. An analysis of these chiral discrimination effects in drug metabolism is essential for an in-depth understanding of metabolic pathways that differ between enantiomers of a given chiral drug or metabolite thereof. Achiral chromatographic separation and structural identification followed by chiral analysis of metabolites from blood specimens usually requires a time-consuming multistage analytical technique. In an effort to optimize such a complicated analytical scheme, a novel two-dimensional online achiral-chiral liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS) coupling method was developed by using a peak parking technique in combination with a makeup flow system. Metabolites were separated in the first dimension using a C18 reversed-phase system. A makeup eluent of water/methanol (95/5) was split into the flow before storing the metabolites separately on chiral cartridges. Subsequently, the metabolite enantiomers were eluted backward onto the analytical chiral column and separated, and the ratio of enantiomers was determined. The method was successfully validated with respect to limit of detection, linearity, intra- and interday accuracy, and precision. In the course of a human volunteer study investigating the influence of CYP (cytochrome) 2C9 genetic polymorphism on phenprocoumon (PPC) metabolism, we used this new two-dimensional online analytical technique for the analysis of PPC metabolites in plasma. The enantiomeric forms of 4'-, 6-, and 7-hydroxy-PPC metabolites as well as two novel metabolites were identified, and the ratio of the enantiomers was calculated. We found that the enantiomeric ratio for the different metabolites in the plasma sample of each measured individual differs markedly from a nearly 100% chiral discrimination for the two new putative metabolites. This new analytical coupling method possesses general utility in the analysis of chiral discrimination effects, particularly as it relates to pharmacokinetics and dynamics, a scientific field that is rapidly becoming an area of concern and interest.  相似文献   

10.
This review is devoted to the chiral optical behavior of films of racemic polymers whose chirality is induced by cocrystallization with nonracemic (also temporary) guest molecules. We provide examples of macromolecular amplification of chirality, produced by molecular and supramolecular mechanisms, on industrially relevant polymers like poly(2,6‐dimethyl‐1,4‐phenylene)oxide (PPO) and syndiotactic polystyrene (s‐PS). Chirality 28:29–38, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Laurence D. Barron 《Chirality》2012,24(12):957-958
The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z0 particle, that lifts the degeneracy of the mirror‐image enantiomers of a chiral molecule. Being odd under P but even under T, this P‐violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P‐odd, T‐odd interaction mediated by the (as yet undetected) axion. This CP‐violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life. Chirality 24:957‐958, 2012.© 2012 Wiley Periodicals, Inc.  相似文献   

12.
The origin of P‐ or M‐chirality of methyl substituted 1,3‐cyclohexadienes are elucidated by time‐dependent density functional theory (TD‐DFT) calculation of 1,3‐cyclohexadiene derivatives and acyclic 1,3‐dienes. The sign‐inversion of the rotatory strength of the lowest excited state between 1,3‐cyclohexadiene and (5R)‐axial‐methyl‐1,3‐cyclohexadiene is caused by the conformation around the (C=)C‐C(‐Me) dihedral angle. The correlation between the sign of the rotatory strength and conformation has been found not only in methyl substituted derivatives but also fluoro substituted compounds. Chirality 27:476–478, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
The present study aimed at analyzing the odor properties of a group of physiological human metabolites of the odorant 1,8‐cineole: 2,3‐dehydro‐, α2,3‐epoxy‐, α/β2‐hydroxy‐, α3‐hydroxy‐, 4‐hydroxy‐, 7‐hydroxy‐, 9‐hydroxy‐, 2‐oxo‐, and 3‐oxo‐1,8‐cineole. These metabolites constitute a group of structurally closely related molecules, which differ mainly in nature and position of O‐containing functional groups. They thus offer the possibility to correlate odor properties with molecular structure, i.e., to establish structure? odor relationships of compounds that are biologically generated from a potent odorant as parent substance. Generally, the metabolites preserved the eucalyptus‐like odor quality of 1,8‐cineole but showed additional odor notes such as sweet, citrus‐like, plastic‐like, earthy, musty, and faecal, which made them distinguishable. The individual enantiomers of chiral molecules also exhibited different odors. With the exception of 2,3‐dehydro‐1,8‐cineole, all metabolites showed a highly decreased odor threshold in comparison to 1,8‐cineole. The determination of odor qualities and odor thresholds was accomplished by gas chromatography/olfactometry (GC/O) on achiral and chiral GC capillaries. The results were correlated with common theories on structure? odor relationships.  相似文献   

14.
Rivaroxaban is an oral direct factor Xa (FXa) inhibitor clinically used to prevent and treat thromboembolic disorders. Drug–drug interaction (DDI) exist for rivaroxaban and the inhibitors of CYP3A4/5. This study aims to investigate the inhibition of rivaroxaban and its derivatives with a chiral center towards UDP‐glucuronosyltransferases (UGTs). Chemical synthesis was performed to obtain rivaroxaban derivatives with different chiral centers. UGTs supersomes‐catalyzed 4‐methylumbelliferone (4‐MU) glucuronidation was employed to evaluate the inhibition potential towards various UGT isoforms. A significant influence of rivaroxaban derivatives towards UGT1A3 was observed. Chiral centers produce different effects towards the effect of four pairs of rivaroxaban derivatives towards UGT1A3 activity, with stronger inhibition potential of S1 than R1, but stronger inhibition capability of R2, R3, R4 than S2, S3, and S4. Competitive inhibition of R3 and R4 towards UGT1A3 was demonstrated by Dixon and Lineweaver‐Burk plots. In conclusion, the significant influence of rivaroxaban derivatives towards UGT1A3's activity was demonstrated in the present study. The chirality centers highly affected the inhibition behavior of rivaroxaban derivatives towards UGT1A3. Chirality 27:936–943, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
武绍龙  唐明  张习敏  唐婧 《广西植物》2022,42(7):1170-1180
为分析马缨杜鹃(Rhododendron delavayi)花开花至凋谢过程中的代谢产物差异及其通路,该文采用LC-MS/MS技术对其花苞期、开裂期、传粉期、盛开期、衰老期和凋谢期的化学成分进行非靶向代谢组学分析。结果表明:(1)共鉴定到973种代谢物,主要包含黄酮类、有机酸、酚酸类、氨基酸及其衍生物、脂类、生物碱等。(2)主成分分析(PCA)表明样本间代谢物存在差异,结合正交偏最小二乘判别分析(OPLS-DA)、t检验的P值和单变量分析的差异倍数(fold-change)筛选差异代谢物(VIP>1,P<0.05,Fc>2或Fc<0.5),涉及591种,在马缨杜鹃花期进入衰老期和凋谢期后差异代谢物数量和表达量显著上升,其中花苞期至开裂期差异代谢物的表达主要呈现下调,而进入衰老期和凋谢期后差异代谢物的表达主要呈现上调。(3)KEGG注释到68条代谢通路,其中差异代谢物极显著富集(P < 0.01)通路3条,包括苯丙素类生物合成、植物激素的生物合成和类黄酮生物合成。(4)结合苯丙素类、黄酮类等有效成分生物合成通路共筛选到10种代谢物包括苯丙氨酸(L-phenylalanine)、反式肉桂酸(trans-cinnamic acid)、查耳酮(chalcone)、柚皮素(naringenin)、对香豆酰基莽草酸(p-coumaroyl shikimic acid)、阿魏酸(ferulic acid)、松柏醇(coniferyl alcohol)、芥子酸(sinapic acid)、紫丁香苷(syringin)、槲皮素(quercetin)。此外,有效成分的差异代谢物表明苯丙素类生物合成代谢活动随马缨杜鹃花的发育逐渐增强,而黄酮类化合物生物合成逐渐减弱,这些关键差异代谢物可能对马缨杜鹃花的发育有重要的调控作用。该研究为马缨杜鹃花开花至凋谢进程中的有效成分代谢途径活性物质的研究提供了代谢组学基础,为进一步研究马缨杜鹃花花期调控的分子机理提供参考。  相似文献   

16.
Brown planthopper (Nilaparvata lugens Stål, BPH) causes huge economic losses in rice‐growing regions, and new strategies for combating BPH are required. To understand how BPHs respond towards BPH‐resistant plants, we systematically analysed the metabolic differences between BPHs feeding on the resistant and susceptible plants using NMR and GC‐FID/MS. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time PCR. BPH metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and TCA cycle intermediates. After initial 12 h, BPHs feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and TCA cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with BPH feeding on the susceptible plants. Decreased levels of BPH metabolites at the early feeding probably resulted from less BPH uptakes of sap from resistant plants and recovery of BPH metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in BPHs. Throughout 96 h, BPH feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the BPH–rice interactions and perhaps for developing new BPH‐combating strategies.  相似文献   

17.
Chiral properties of surface complexes based on CdSe/ZnS quantum dots (QDs) and 1‐(2‐pyridylazo)‐2‐naphthol (PAN) azo dye were investigated by circular dichroism spectroscopy. The use of L‐, D‐cysteine (Lcys, Dcys) capping ligands allowed us to obtain water‐soluble chiral QD‐PAN complexes. The characterization of the complexes was performed by UV‐vis, FTIR, and CD spectroscopy. Quantum chemical TDDFT calculated CD spectra reproduced the experimentally observed sign patterns, which originate from binding Lcys or Dcys and PAN molecules to the same Zn atom on the QD surface. The resulting complex is characterized by a large circular dichroism in comparison with an ordinary QD chirality induced by cysteine molecules. The pattern of CD signal is the same for Lcys and Dcys ligands in chiral QD‐PAN complex.  相似文献   

18.
Determining the role of plant secondary metabolites in stress conditions is problematic due to the diversity of their structures and the complexity of their interdependence with different biological pathways. Correlation of metabolomic data with the genetic background provides essential information about the features of metabolites. LC‐MS analysis of leaf metabolites from 100 barley recombinant inbred lines (RILs) revealed that 98 traits among 135 detected phenolic and terpenoid compounds significantly changed their level as a result of drought stress. Metabolites with similar patterns of change were grouped in modules, revealing differences among RILs and parental varieties at early and late stages of drought. The most significant changes in stress were observed for ferulic and sinapic acid derivatives as well as acylated glycosides of flavones. The tendency to accumulate methylated compounds was a major phenomenon in this set of samples. In addition, the polyamine derivatives hordatines as well as terpenoid blumenol C derivatives were observed to be drought related. The correlation of drought‐related compounds with molecular marker polymorphisms resulted in the definition of metabolomic quantitative trait loci in the genomic regions of single‐nucleotide polymorphism 3101‐111 and simple sequence repeat Bmag0692 with multiple linkages to metabolites. The associations pointed to genes related to the defence response and response to cold, heat and oxidative stress, but not to genes related to biosynthesis of the compounds. We postulate that the significant metabolites have a role as antioxidants, regulators of gene expression and modulators of protein function in barley during drought.  相似文献   

19.
《Chirality》2017,29(3-4):120-129
Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2‐ and 2′‐positions and an alkoxycarbonyl group at the 4′‐position of the biphenyl pendants (poly‐ Ac 's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis transoidal ) poly‐ Ac 's folded into a predominantly one‐handed helical conformation accompanied by a preferred‐handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main‐chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly‐ Ac 's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2‐ and 2′‐positions of the biphenyl pendants (poly‐ MOM 's). In the solid state, however, the helicity memory of the poly‐ Ac 's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly‐ MOM when used as a chiral stationary phase for high‐performance liquid chromatography. In particular, the poly‐ Ac ‐based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.  相似文献   

20.

Introduction

Cirsium chanroenicum and C. setidens are commonly used both in traditional folk medicine and as a food source. The quality of different species of Cirsium at different harvest times is a function of their metabolite composition, which is determined by the phenological stage.

Objective

We sought to determine the differences in the metabolite composition of two species of Cirsium during different phenological stages using ultra‐performance liquid chromatography (UPLC) quadrupole time‐of‐flight (QTOF) mass spectrometry (MS).

Methodology

Cirsium chanroenicum and C. setidens plants were collected at the floral budding and full flowering stages. Metabolic profiles of Cirsium extracts were determined using UPLC‐QTOF/MS to characterise the differences between phenological stages, and the major metabolites were quantified using UPLC‐QTOF/MS‐multiple reaction monitoring (MRM).

Results

At the full flowering stage, the levels of phenolic acids as well as components of the phenylpropanoid pathway were increased. Flavonoids predominated at the full flowering stage in both species. The levels of coumaric acid, kaempferol, and pectolinarigenin differed between the two species of Cirsium. Overall, these results suggest that components of the phenylpropanoid metabolic pathway are upregulated in the full flowering stage in Cirsium, although we did observe some variation between the species.

Conclusion

These results will help elucidate the metabolic pathways related to the different phases of the vegetative cycle, and may help determine the optimal season for the harvest of Cirsium with the highest levels of bioactive compounds. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号