首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
瞬时受体电位通道M2(transient receptor potential channel melastatin 2, TRPM2)是人体中一个重要的Ca2+通透性非选择性阳离子通道,通常表达于正常细胞胞膜和溶酶体膜上,并在氧化应激中发挥重要的离子调节作用。但近年发现,TRPM2也在多种恶性肿瘤(神经母细胞瘤,舌/喉鳞状细胞癌,肺癌,乳腺癌,胃癌,胰腺癌,膀胱癌,前列腺癌和T细胞白血病)中高表达,能通过调节细胞线粒体功能和自噬促进肿瘤细胞的生物学能量而促进其生存能力,通过调节抗氧化物水平增强细胞对氧化刺激的耐受力而表现出化疗抵抗作用。同时,在肿瘤细胞膜上该通道大量激活又对化疗药物联合使用发挥协同作用。此外,TRPM2能通过激活多种不同的分子的信号通路,促进细胞增殖、侵袭和转移能力。总之,根据肿瘤的不同,TRPM2对肿瘤细胞生物学行为的调控机制也不同,甚至具有复杂的双重作用。所以,对TRPM2的生化及分子机制的研究必将使我们对肿瘤的发生发展的认识更加全面。本文将从TRPM2蛋白质的结构,生理功能及肿瘤机制等不同角度系统阐述TRPM2的研究现状和进展。  相似文献   

4.
5.
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in facilitating tumor progression and metastasis. Reducing the levels of HIF-1α might therefore be an important anticancer strategy. This could be achieved by understanding the key cellular events involved in HIF-1α activation. Present study explored the effect of phenethyl isothiocyanate (PEITC), a natural isothiocyanate, found in cruciferous vegetables on the expression of HIF-1α and HSP90 in breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) under both normoxia and hypoxia. This study established the possible role of ROS in the up-regulation of these markers in breast cancer cells. PEITC-induced nuclear accumulation of Nrf2, increased the activities of several antioxidant enzymes, and thus reduced the ROS burden of the tumor cells by acting as an indirect antioxidant. This resulted in the down-regulation of HSP90 and thereby HIF-1α expression. HSP90 was also found to be involved in the regulation of HIF-1α. A probable link between down-regulation of HIF-1α with reduction of ROS by PEITC through induction of Nrf2 was determined. Finally, our study demonstrated that modulation of HIF-1α by PEITC retarded adhesion, aggregation, migration and invasion of the breast cancer cells, thereby showing anti-metastatic effect. Activities of MMPs (2 & 9) and expression of VEGF were also altered by PEITC.  相似文献   

6.
B cells that interact with T cells play a role in regulating the defense function by producing antibodies and inflammatory cytokines. C-X-C chemokine receptor type 4 (CXCR4) is a specific receptor for stromal cell-derived factor 1 (SDF-1) that controls various B cell functions. Here, we investigated whether CXCR4 regulates B cell viability by inducing hypoxia-inducible factor (HIF)-1α and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) under a hypoxic condition in WiL2-NS human B cells. Nrf2 and CXCR4 expressions increased significantly when WiL2-NS cells were incubated under a hypoxic condition. Interfering with CXCR4 expression using CXCR4-siRNA inhibited cell viability. CXCR4 expression also decreased after treatment with a HIF inhibitor under the hypoxic condition, leading to inhibited cell viability. Increased reactive oxygen species (ROS) levels and the expression of HIF-1α and Nrf2 decreased under the hypoxic condition following incubation with N-acetylcysteine, a ROS scavenger, which was associated with a decrease in CXCR4 expression. CXCR4 expression was augmented by overexpressing Nrf2 after transfecting the pcDNA3.1-Nrf2 plasmid. CXCR4 expression decreased and HIF-1α accumulation decreased when Nrf2 was inhibited by doxycycline in tet-shNrf2-expressed stable cells. Nrf2 or HIF-1α bound from −718 to −561 of the CXCR4 gene promoter as judged by a chromatin immunoprecipitation assay. Taken together, these data show that B cell viability under a hypoxic condition could be regulated by CXCR4 expression through binding of HIF-1α and Nrf2 to the CXCR4 gene promoter cooperatively. These results suggest that CXCR4 could be an additional therapeutic target to control B cells with roles at disease sites under hypoxic conditions.Subject terms: Stress signalling, Immune cell death  相似文献   

7.
8.
Reactive oxygen species (ROS) are important in regulating normal cellular processes, but deregulated ROS contribute to the development of various human diseases including cancers. Autophagy is one of the first lines of defense against oxidative stress damage. The autophagy pathway can be induced and upregulated in response to intracellular ROS or extracellular oxidative stress. This leads to selective lysosomal self-digestion of intracellular components to maintain cellular homeostasis. Hence, autophagy is the survival pathway, conferring stress adaptation and promoting viability under oxidative stress. However, increasing evidence has demonstrated that autophagy can also lead to cell death under oxidative stress conditions. In addition, altered autophagic signaling pathways that lead to decreased autophagy are frequently found in many human cancers. This review discusses the advances in understanding of the mechanisms of ROS-induced autophagy and how this process relates to tumorigenesis and cancer therapy.  相似文献   

9.
We previously reported that Xiaotan Sanjie (XTSJ) decoction can prevent the progression of gastric cancer in vitro and in vivo. Pinelliae rhizome (PR), one component of XTSJ decoction, has an inhibitory effect on the growth and proliferation of tumor cells. The present study investigated the underlying mechanisms of action of PR. Using the human papillary thyroid cancer cell lines, TPC-1 and BCPAP, we found that XTSJ decoction and PR alone decreased cell viability to a similar extent in both cell lines, whereas treatment with XTJS decoction without PR [PR (−)] had a lesser effect. PR treatment inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in a dose-dependent manner. To investigate the role of Nrf2 in the PR-mediated effects of XTSJ, knockdown of Nrf2 in the tumor cell lines using Nrf2 siRNA (siNrf2) was performed and transfected cells were treated with PR. Silencing of Nrf2 amplified the effects on autophagy, cell viability, apoptosis, and colony formation. Similar results were obtained following treatment with the autophagy inhibitor 3-methyladenine (3-MA). Furthermore, treatment with PR, siNrf2, and/or 3-MA inhibited the MAPK pathway, and analysis of the MAPK pathway components confirmed the role of this pathway in the PR-mediated cellular effects. In mice implanted with siNrf2-transfected cells, the effects of PR were amplified. Taken together, these findings indicate that PR is critical for the inhibitory effects of XTSJ decoction on tumor cell viability and that downregulation of Nrf2 promotes the antitumor effects of PR on papillary thyroid cancer cells.  相似文献   

10.
11.
mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC) cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs) and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.  相似文献   

12.
13.
14.
Overexpression or activation of cyclic AMP-response element-binding protein (CREB) has been known to be involved in several human malignancies, including lung cancer. Genes regulated by CREB have been reported to suppress apoptosis, induce cell proliferation, inflammation, and tumor metastasis. However, the critical target genes of CREB in lung cancer have not been well understood. Here, we identified GSK-3α as one of the CREB target genes which is critical for the viability of lung cancer cells. The CREB knockdown significantly reduced the expression of GSK-3α and the direct binding of CREB on the promoter of GSK3A was identified. Kaplan-Meier analysis with a public database showed a prognostic significance of aberrant GSK-3α expression in lung cancer. Inhibition of GSK-3α suppressed cell viability, colony formation, and tumor growth. For the first time, we demonstrated that GSK-3α is regulated by CREB in lung cancer and is required for the cell viability. These findings implicate CREB-GSK-3α axis as a novel therapeutic target for lung cancer treatment.  相似文献   

15.
Modulation of oxidative stress in cancer cells plays an important role in the study of the resistance to anticancer therapies. Uncoupling protein 2 (UCP2) may play a dual role in cancer, acting as a protective mechanism in normal cells, while its overexpression in cancer cells could confer resistance to chemotherapy and a higher survival through downregulation of ROS production. Thus, our aim was to check whether the inhibition of UCP2 expression and function increases oxidative stress and could render breast cancer cells more sensitive to cisplatin (CDDP) or tamoxifen (TAM). For this purpose, we studied clonogenicity, mitochondrial membrane potential (ΔΨm), cell viability, ROS production, apoptosis, and autophagy in MCF-7 and T47D (only the last four determinations) breast cancer cells treated with CDDP or TAM, in combination or without a UCP2 knockdown (siRNA or genipin). Furthermore, survival curves were performed in order to check the impact of UCP2 expression in breast cancer patients. UCP2 inhibition and cytotoxic treatments produced a decrease in cell viability and clonogenicity, in addition to an increase in ΔΨm, ROS production, apoptosis, and autophagy. It is important to note that CDDP decreased UCP2 protein levels, so that the greatest effects produced by the UCP2 inhibition in combination with a cytotoxic treatment, with regard to treatment alone, were observed in TAM+UCP2siRNA-treated cells. Moreover, this UCP2 inhibition caused autophagic cell death, since apoptosis parameters barely increased after UCP2 knockdown. Finally, survival curves revealed that higher UCP2 expression corresponded with a poorer prognosis. In conclusion, UCP2 could be a therapeutic target in breast cancer, especially in those patients treated with tamoxifen.  相似文献   

16.
Emerging evidence indicates that oxidative stress instigates the formation of ubiquitin (Ub) aggregates, substrates of autophagy, through a process requiring the ubiquitin binding adaptors p62/SQSTM1 and NBR1. Here, we have investigated the role of p62 and NBR1 in cell survival after hypericin-mediated photodynamic therapy (Hyp-PDT), a procedure known to incite robust reactive oxygen species (ROS)-based endoplasmic reticulum stress and autophagy pathways. We found that Hyp-PDT stimulated the formation of p62- and NBR1-associated Ub aggregates in normal and cancer cells, which were ultimately removed by autophagy, through a mechanism partially regulated by p38MAPK. In line with this, genetic or pharmacological p38MAPK inhibition reduced p62 and NBR1 levels and aggregate formation and impaired Nrf2 activation, thus increasing photo-oxidative stress and cell death. p62-deficient cells, or cells lacking p62 and with reduced levels of NBR1 (through siRNA knockdown), also displayed reduced aggregate formation but exhibited attenuated ROS levels, reduced caspase activation, and improved survival after Hyp-PDT. The increased resistance to photo-oxidative stress exhibited by cells lacking p62 and/or NBR1 was overruled by the inhibition of p38MAPK, which restored cytotoxic ROS levels, thus indicating the relevance of this signal in the control of cell viability. Taken together these findings provide evidence that in photodynamically treated cells a p38MAPK-regulated pathway coordinates the p62/NBR1-mediated clearance of cytosolic aggregates and mitigates PDT-induced proteotoxicity. They also reveal that a functional p38MAPK–Nrf2 signal is required to keep ROS levels in check and protect against PDT-induced proteotoxicity, independent of aggregate formation.  相似文献   

17.
《Autophagy》2013,9(4):603-617
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.  相似文献   

18.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.  相似文献   

19.
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号