首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretome of stem cells strongly determines the outcome of tissue engineering strategies. We investigated how the secretome of human adipose stem cells (hASCs) can be affected by substrate, BMP-2 treatment, and degree of differentiation. We hypothesized that as differentiation progresses, hASCs produce increasingly more gene products associated with processes such as angiogenesis and bone remodeling.  相似文献   

2.
3.
Very low molecular weight chitooligosaccharide (COS, 1.4 kDa) and high molecular weight chitosan (1000 kDa) were comparatively studied in terms of physical and biological characteristics. Thin films of COS, chitosan and gelatin were prepared and crosslinked by dehydrothermal treatment at 140 °C for 24 h. COS film presented more hydrophilic property than chitosan film. Behaviors of rat adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (MSCs) were investigated on COS and chitosan films, comparing to those on gelatin film. The results on cell spreading suggested that both ASCs and MSCs preferred to attach on COS film than chitosan film with 6–7 times larger cell areas. Numbers of both stem cells proliferated on COS film were approximately 3-fold higher than those on chitosan film. In addition, COS film enhanced osteogenic differentiating potential of MSCs, as observed from the alkaline phosphatase activity and calcium deposition. Therefore, in this work, COS was shown to be a more favorable material for the growth and osteogenic differentiation of both ASCs and MSCs, compared to high molecular weight chitosan.  相似文献   

4.
5.
6.
7.
We developed a new and efficient method for osteoblastic differentiation of human embryonic stem cells (hESCs) using primary bone-derived cells (PBDs). Three days after embryoid body (hEB) formation, cells were allowed to adhere to culture surface where PBDs were pre-plated and mitomycin C-treated in DMEM/F12 medium supplemented with 5% knockout serum replacement. As early as 14 days, mineralization and formation of nodule-like structures in cocultured hEBs were prominent by von Kossa and Alizarin S staining, and expressions of osteoblast-specific markers including bone sialoprotein, alkaline phosphates, osteocalcin, collagen 1, and core binding factor alpha1 by RT-PCR. In addition, FACS analysis revealed that over 19% of the differentiated cells expressed osteocalcin. These results suggest that PBDs not only have osteogenic effects releasing osteogenic factors as bone morphogenic protein (BMP) 2 and BMP 4 but also have exerted other effects, whether chemical or physical, for the differentiation of hESCs.  相似文献   

8.
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling.  相似文献   

9.
Developing bone is subject to the control of a broad variety of influences in vivo. For bone repair applications, in vitro osteogenic assays are routinely used to test the responses of bone-forming cells to drugs, hormones, and biomaterials. Results of these assays are used to predict the behavior of bone-forming cells in vivo. Stem cell research has shown promise for enhancing bone repair. In vitro osteogenic assays to test the bone-forming response of stem cells typically use chemical solutions. Stem cell in vitro osteogenic assays often neglect important biophysical cues, such as the forces associated with regular weight-bearing exercise, which promote bone formation. Incorporating more biophysical cues that promote bone formation would improve in vitro osteogenic assays for stem cells. Improved in vitro osteogenic stimulation opens opportunities for “pre-conditioning” cells to differentiate towards the desired lineage. In this review, we explore the role of select biophysical factors—growth surfaces, tensile strain, fluid flow and electromagnetic stimulation—in promoting osteogenic differentiation of stem cells from human adipose. Emphasis is placed on the potential for physical microenvironment manipulation to translate tissue engineering and stem cell research into widespread clinical usage.  相似文献   

10.
11.
As the signals required for cardiomyocyte differentiation and functional regulation are complex and only partly understood, the mechanisms prompting the differentiation and specification of pluripotential embryonic stem (ES) cells into cardiomyocytes remain unclear. We hypothesized that a combined technology system, cocultured with a visceral endoderm (VE) - like cell line, END-2, and added cytokine BMP-2, would induce high percentage conversion of murine ES-D3 cell line into cardiomyocytes, and derived cardiomyocytes in this system would exhibit more mature characteristics. It was observed that 92% (P<0.01) ES cell-derived aggregates in this system exhibited rhythmic contractions, and the contractile areas were greater. By contrast, in ES cells cultured alone, on the feeder layer of END-2 cells, or with added BMP-2, the total percentage of beating aggregates was 19, 69 (P<0.01) and 44% (P<0.01), respectively. All the rhythmically contractile cells derived from ES cells expressed cardiac-specific proteins for troponin T. Among them, the combined system resulted in significantly increased cardiac-specific genes (NKx2.5, alpha-MHC). Transmission electron microscopy (TEM) revealed varying degrees of myofibrillar organization, and the combined system resulted in a more mature phenotype such as Z bands, nascent intercalated discs and gap junctions. Before shifting to the cardiomyocyte phenotype, this system could accelerate apoptosis of the cell population (P<0.01). The inductive efficacy of this system can provide an opportunity to facilitate cardiomyocyte differentiation of ES cells. The inducible effects of this system may depend on increasing cardiac-specific gene expression and the induction of apoptosis in cells that are not committed to cardiac differentiation.  相似文献   

12.
13.
Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) can be equally proper in the treatment of neurodegenerative diseases. However, ADSCs have practical benefits. In this study, we attempted to induce the secretion of neurotrophic factors (NTF) in human ADSCs. We then evaluated the effects of co-culture with NTF secreting cells in neural differentiation of human ADSCs. Isolated human ADSCs were induced to neurotrophic factors secreting cells. To evaluate the in vitro effects of NTF-secreting ADSCs on neurogenic differentiation of ADSCs, we used neurogenic induction medium (control group), the combination of neurogenic medium and conditioned medium, or co-cultured NTF-secreting ADSCs which were encapsulated in alginate beads (co-culture) for 7 days. ELISA showed increased (by about 5 times) release of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in NTF-secreting ADSCs compared to human ADSCs. Real time RT-PCR analysis revealed that NTF-secreting ADSCs highly expressed NGF and BDNF. In addition, co-culture with NTF-secreting ADSCs could also promote neuronal differentiation relative to gliogenesis. Overall, NTF-secreting ADSCs secrete a range of growth factors whose levels in culture could promote neuronal differentiation and could support the survival and regeneration in a variety of neurodegenerative diseases.  相似文献   

14.
15.
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.  相似文献   

16.
Objectives:Mesenchymal stem cells (MSCs) have become seed cells and basic elements for bone regeneration and bone tissue engineering. The aim of the present study was to investigate the roles and mechanisms of bone morphogenetic protein 2 (BMP-2) on osteogenic differentiation of MSCs.Methods:Primary MSCs were isolated from the femur and tibia bone of rats and then transfected with BMP-2 and PGC-1α adenovirus vectors. Alkaline phosphatase (ALP) activity and alizarin red staining were used to measure osteogenic differentiation of MSCs. Real-time PCR and western blot assays were performed to assess osteogenic differentiation-related proteins levels. The activities of mitochondrial respiratory chain complexes I and II and mitochondrial fluorescence intensity were used to explore mitochondria status during osteogenic differentiation of MSCs.Results:We found that the ability of BMP-2 overexpressed (OE) group osteogenic differentiation was significantly improved, compared with the negative control (NC) group. The results also indicated that BMP-2 can promote the activity of mitochondria. We further used the gain- and loss-of-function approaches to demonstrate that BMP-2 promotes mitochondrial activity by up-regulating PGC-1α to promote osteogenic differentiation of MSCs.Conclusions:These results explored the important role of BMP-2 in the osteoblast differentiation of MSCs from a new perspective, providing a theoretical and experimental basis for bone defect and repair.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号