首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroblastoma (NB) is the most common extra-cranial pediatric solid tumor in children. Despite NB’s relative rarity, high-risk NB patients have a poor prognosis with survival rate less than 50%. This is even worse for patients with relapsed or refractory NB. Finding effective alternative treatment strategies is therefore a must.Calcium is an intracellular messenger that is unequivocally present in normal physiology mediating proliferation, growth, migration, cell division, angiogenesis and cell death, as well as pathophysiological processes such as those included in Weinberg’s hallmarks of cancer. Within the past 20 years, the molecular identity of most calcium channels has been revealed, however for some of these channels the precise gating mechanism and their role in normal physiology is still elusive.Here we review the recent findings of components of calcium signaling that are deregulating in the malignant progression of NB. We further integrate critical calcium signaling pathways using patient-derived expression analysis.Revealing the roles of these calcium pathways in tumor development, progression, microenvironment and importantly - protection against antineoplastic drugs may hopefully lead to novel treatment strategies in the future.  相似文献   

2.
Cancer stem cells (CSCs) possess self-renewal and differentiation potential, which may be related to recurrence, metastasis, and radiochemotherapy resistance during tumor treatment. Understanding the mechanisms via which CSCs maintain self-renewal may reveal new therapeutic targets for attenuating CSC resistance and extending patient life-span. Recent studies have shown that amino acid metabolism plays an important role in maintaining the self-renewal of CSCs and is involved in regulating their tumorigenicity characteristics. This review summarizes the relationship between CSCs and amino acid metabolism, and discusses the possible mechanisms by which amino acid metabolism regulates CSC characteristics particularly self-renewal, survival and stemness. The ultimate goal is to identify new targets and research directions for elimination of CSCs.  相似文献   

3.
4.
Cancer stem cells are a subpopulation of tumor cells that proliferate, self-renew and produce more differentiated tumoral cells building-up the tumor. Responsible for the sustained growth of malignant tumors, cancer stem cells are proposed to play significant roles in cancer resistance to standard treatment and in tumor recurrence. Among the mechanisms dysregulated in neoplasms, those related to Ca2+ play significant roles in various aspects of cancers. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are tightly controlled by channels, pumps, exchangers and Ca2+ binding proteins. These components support the genesis of Ca2+ signals with specific spatio-temporal characteristics that define the cell response. Being involved in the coupling of extracellular events with intracellular responses, the Ca2+ toolkit is often hijacked by cancer cells to promote notably their proliferation and invasion. Growing evidence obtained during the last decade pointed to a role of Ca2+ handling and mishandling in cancer stem cells. In this review, after a general overview of the concept of cancer stem cells we analyse and discuss the studies and current knowledge regarding the complex roles of Ca2+ toolkit and signaling in these cells. We highlight that numbers of Ca2+ signaling actors promote cancer stem cell state and are associated with cell resistance to current cancer treatments and thus may represent promising targets for potential clinical applications.  相似文献   

5.
6.
p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD44+/CD24, ALDH+, or PKH26+ CSC populations than the respective non-CSC populations in human breast cancer tissues and cancer cell lines and p97 expression also positively correlated with that of SOX2, another CSC marker. To assess the role of p97 in breast cancers, cancer proliferation, mammosphere, and orthotopic growth were analyzed. Similarly as p97 depletion, two pharmacological inhibitors, which targets the ER-associated p97 or globally inhibits p97’s ATPase activity, markedly reduced cancer growth and the CSC population. Importantly, depletion or inhibition of p97 greatly suppressed the proliferation of the ALDH+ CSCs and the CSC-enriched mammospheres, while exhibiting much less or insignificant inhibitory effects on the non-CSC cancer cells. Comparable phenotypes produced by blocking ERAD suggest that ER proteostasis is essential for the CSC integrity. Loss of p97 gravely activated the unfolded protein response (UPR) and modulated the expression of multiple stemness and pluripotency regulators, including C/EBPδ, c-MYC, SOX2, and SKP2, which collectively contributed to the demise of CSCs. In summary, p97 controls the breast CSC integrity through multiple targets, many of which directly affect cancer stemness and are induced by UPR activation. Our findings highlight the importance of p97 and ER proteostasis in CSC biology and anticancer therapy.Subject terms: Breast cancer, Endoplasmic reticulum, ER-associated degradation  相似文献   

7.
The immune system protects our body against foreign pathogens. However, if it overshoots or turns against itself, pro-inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, or diabetes develop. Ions, the most basic signaling molecules, shape intracellular signaling cascades resulting in immune cell activation and subsequent immune responses. Mutations in ion channels required for calcium signaling result in human immunodeficiencies and highlight those ion channels as valued targets for therapies against pro-inflammatory diseases. Signaling pathways regulated by melastatin-like transient receptor potential (TRPM) cation channels also play crucial roles in calcium signaling and leukocyte physiology, affecting phagocytosis, degranulation, chemokine and cytokine expression, chemotaxis and invasion, as well as lymphocyte development and proliferation. Therefore, this review discusses their regulation, possible interactions and whether they can be exploited as targets for therapeutic approaches to pro-inflammatory diseases.  相似文献   

8.
Intracellular calcium ions are key second messengers and play an important role in malignant transformation and cancer progression. Estrogen can evoke intracellular calcium increases through membrane-initiated effects and activate subsequent kinase cascades within minutes in normal and cancerous epithelial cells. Ca2+-related proteins are expressed in normal epithelial cells or endometrial cancer cells, some of which are upregulated by estrogen. Both estrogen-induced transient calcium increases and long-term changes in protein expression levels may be involved in regulating cancer initiation, progression and metastasis. Calcium channel blockers are reported to regulate both the rapid estrogen-induced intracellular Ca2+ increase and cell proliferation, apoptosis and migration, thus having the potential for pharmacological modulators to be repurposed for the treatment of endometrial cancer.  相似文献   

9.
Advances of calcium signals involved in plant anti-drought   总被引:1,自引:0,他引:1  
Considerable progresses have taken place, both in the methodology available to study changes in intracellular cytosolic calcium and in our understanding of calcium signaling cascades, but how calcium signals function in plant drought resistance is questionable. In plant cells, calcium plays roles as a second messenger coupling a wide range of extracellular stimuli with intracellular responses. Different extracellular stimuli trigger specific calcium signatures: dynamics, amplitude and duration of calcium transients specify the nature, implication and intensity of stimuli. Calcium-binding proteins (sensors) play a critical role in decoding calcium signatures and transducing signals by activating specific targets and corresponding metabolic pathways. Calmodulin is a calcium sensor known to regulate the activity of many mammalian proteins, whose targets in plants are now being identified. Higher plants possess a rapidly growing list of calmodulin targets with a variety of cellular functions. Nevertheless, many targets appear to be unique to higher plants and remain characterized, calling for a concerted effort to elucidate their functions. To date, three major classes of plant calcium signals, including calcium permeable ion channels, Ca(2+)/H(+) antiporters and Ca(2+)-ATPases, have been responsible for drought-stress signal transduction. This review summarizes the current knowledge of calcium signals involved in plant anti-drought and plant water use efficiency (WUE) and presents suggestions for future focus of study.  相似文献   

10.
Increases in intracellular free Ca(2+) play a major role in many cellular processes. The deregulation of Ca(2+) signaling is a feature of a variety of diseases, and modulators of Ca(2+) signaling are used to treat conditions as diverse as hypertension to pain. The Ca(2+) signal also plays a role in processes important in cancer, such as proliferation and migration. Many studies in cancer have identified alterations in the expression of proteins involved in the movement of Ca(2+) across the plasma membrane and subcellular organelles. In some cases, these Ca(2+) channels or pumps are potential therapeutic targets for specific cancer subtypes or correlate with prognosis.  相似文献   

11.
T型钙通道是激活电位低、失活速度快、单通道电导小的电压依赖性钙通道,具有高组织特异性、突出的生理功能及药理学选择性等特点。近年来的研究表明,T型钙通道通过独特的激活失活效应参与细胞内外钙流的振荡,影响肿瘤细胞的增殖过程。值得关注的是正常人乳腺上皮细胞中没有T型钙通道,而在不同分化阶段的乳腺癌细胞中该通道却有表达。实验证实,T型钙通道的表达影响乳腺癌细胞的增殖,通道拮抗剂能够显著地抑制乳腺癌细胞增殖。这一发现为乳腺癌的诊断及靶向治疗药物的研发提供了新的思路。本文概要介绍了近年来T型钙通道与乳腺癌关系的研究进展。  相似文献   

12.
Plasma membrane ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. Enhanced proliferation, aberrant differentiation, and impaired ability to die are the prime reasons for abnormal tissue growth, which can eventually turn into uncontrolled expansion and invasion, characteristic of cancer. Prostate cancer (PCa) cells express a variety of plasma membrane ion channels. By providing the influx of essential signaling ions, perturbing intracellular ion concentrations, regulating cell volume, and maintaining membrane potential, PCa cells are critically involved in proliferation, differentiation, and apoptosis. PCa cells of varying metastatic ability can be distinguished by their ion channel characteristics. Increased malignancy and invasiveness of androgen-independent PCa cells is generally associated with the shift to a 'more excitable' phenotype of their plasma membrane. This shift is manifested by the appearance of voltage-gated Na(+) and Ca(2+) channels which contribute to their enhanced apoptotic resistance together with downregulated store-operated Ca(2+) influx, altered expression of different K(+) channels and members of the Transient Receptor Potential (TRP) channel family, and strengthened capability for maintaining volume constancy. The present review examines channel types expressed by PCa cells and their involvement in metastatic behaviors.  相似文献   

13.
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self‐renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self‐renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well‐studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti‐cancer regimes.  相似文献   

14.
肿瘤干细胞的生物学特性及其研究进展   总被引:1,自引:0,他引:1  
肿瘤干细胞(cancer stem cells,CSC)是肿瘤组织中存在的一类干细胞,具有自我更新、无限增殖能力及致瘤性。大量研究显示,血液系统及实体瘤中均存在CSC。综述了CSC生物学特性的最新研究进展,包括寻找表面标记物、确定CSC微环境、分选与鉴定CSC、探索肿瘤细z胞和CSC之间的转化、研究CSC耐药性和耐药机制。利用肿瘤的这些生物学特性选择性杀伤肿瘤干细胞的靶分子疗法,为克服肿瘤耐药的复发与转移提供新的策略。CSC的研究为人们对肿瘤生物学特性的进一步认识提供了新的思路,并为肿瘤的临床治疗提供了新的希望。  相似文献   

15.
Intracellular calcium signals activated by growth factors in endothelial cells during angiogenesis regulate cytosolic and nuclear events involved in survival, proliferation and motility. Among the intracellular messengers released after proangiogenic stimulation (bFGF, VEGF), arachidonic acid (AA), nitric oxide (NO) and their metabolites play a key role and their effects are strictly related to calcium homeostasis. Recently, we showed that AA and NO are able to stimulate the opening of store-independent calcium-permeable channels in the plasmamembrane of bovine aortic endothelial cells (BAECs). Here, we studied the intracellular spatiotemporal dynamics of AA- and NO-induced calcium increases following store-independent calcium entry from extracellular medium. Using confocal calcium imaging, we show that calcium entry is preferentially restricted to peripheral cytosolic microdomains and does not necessarily invade the nuclear region. These results support the existence of local mitogen-activated calcium signals. Several factors could account for this spatial restriction, including the geometry of the cells and the clusterization of calcium channels and other signalling molecules. Intracellular calcium fingerprints could contribute to the specificity of endothelial cell responses to angiogenic factors.  相似文献   

16.
The calcium signal is implicated in a variety of processes important in tumor progression (e.g. proliferation and invasiveness). The calcium signal has also been shown to be important in other processes important in cancer progression including the development of resistance to current cancer therapies. In this review, we discuss how Ca2+ channels, pumps and exchangers may be drug targets in some cancer types. We consider what factors should be taken into account when considering an optimal Ca2+ channel, pump or exchanger as a candidate for further assessment as a novel drug target in cancer. We also present and summarize how some therapies for the treatment of cancer intersect with Ca2+ signaling and how pharmacological manipulation of the machinery of Ca2+ signaling could promote the effectiveness of some therapies. We also review new therapeutic opportunities for Ca2+ signal modulators in the context of the tumor microenvironment.  相似文献   

17.
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.  相似文献   

18.
Unlike other normal cells, a subpopulation of cells often termed as “stem cells” are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.  相似文献   

19.
神经干细胞体外增殖分化的钙成像研究   总被引:2,自引:0,他引:2  
神经干细胞具有广阔的应用前景,但对于其增殖和分化的内源机制、外部环境信号还并不十分了解。研究表明,钙信号很可能在其中起到了调控作用。利用钙离子成像技术,观察神经干细胞的单细胞体外增殖和分化过程,记录了在细胞分裂过程中钙信号变化的曲线。发现细胞增殖和分化过程中都会产生钙浓度的变化,但在细胞分裂后期两者钙信号的模式却存在差别。实验结果提示,胞内钙水平的波动只是细胞增殖的伴随产物,但却是细胞分化的必要条件。由此提出钙信号对神经干细胞分化调控机制的假设,并指出其对今后研究的意义。  相似文献   

20.
Tachykinins such as SP (substance P) may be involved in the progression of gastric adenocarcinoma through binding to NK-1 receptor. However, the existence and relationship between SP and gastric cancer progression and differentiation remained unknown. We have studied the NK-1 receptor in human gastric cancer tissue and MKN45 cell line and found SP-containing nerve fibres in human gastric cancer and found that the amounts of SP-positive nerves were related to gastric cancer differentiation. SP could promote proliferation, adhesion, migration and invasion of MKN45 cells in vitro. In addition, the intracellular calcium level of MKN45 cells was elevated after SP stimulation, and administration of CRACs (calcium release-activated calcium channels) inhibitor SKF-96365 could partially abolish these effects induced by SP. These results demonstrated that NK-1 receptor and SP-containing nerves existed in human gastric cancer; SP positive nerves may play an important role in human gastric cancer progression, and calcium is critically significant among SP-induced biological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号