首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low‐molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. Chirality 27:659–666, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Because of the potential importance of carbon nanotubes (CNT) in renewable energy and other fields, molecular orbital ab initio calculations are used to study the relation between mechanical and electronic properties of such structures. We estimate a modulus of elasticity of 1.3 TPa and find out that the mechanism of CNT structure deformation is dependent on their chirality. Armchair and chiral nanotubes have ductile deformation fracture while zigzag have both ductile and brittle; on the other hand armchair nanotubes fracture and form two caps while chiral nanotubes adopt a helical-structure conformation. In addition, the energy gap between occupied and unoccupied molecular orbitals increases when nanotubes are under plastic deformation. This strong coupling between mechanical and electrical properties can be used to tune CNT mechanically to specific electronic bandgaps, affecting directly their electromagnetic absorption properties.  相似文献   

3.
Fluoroquinolones are popular class of antibiotics with distinct chemical functionality. Most of them are ampholytes with one chiral center. Stereogeneic center is located either in the side ring of Gatifloxacin (GFLX) or in the quinolone core of Ofloxacin (OFLX). These two amphoteric fluoroquinolones have terminal amino groups in common. The unusual Nadifloxacin (NFLX) is an acidic fluoroquinolone with a core chiral center. Owing to chirality and functionality differences among GFLX, OFLX, and NFLX, we mapped these enantiomers onto structure‐retention relationship. Amount of acetic acid modifier was studied in screened mobile phase and cellulose tris(3‐chloro‐4‐methyl phenyl carbamate) (Lux cellulose‐2) stationary phase. Experimental design of acetic acid% along with column temperature have been applied. Resolution and enantioselectivity have been related to structural features of the studied enantiomers. High amount of acid (0.4%) was optimum for the separation of either side chirality with a proximate amino group (GFLX) or core chirality without basic functionality (NFLX), while low amount (0.2%) is optimum for core chiral center with distal amino group (OFLX). Temperature has no significant effect on resolution and retention of enantiomers except for OFLX. Enantio‐retention explains possible chiral selective and nonselective interactions. The proposed methods have been validated for pharmaceutical analyses.  相似文献   

4.
《Chirality》2017,29(3-4):120-129
Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2‐ and 2′‐positions and an alkoxycarbonyl group at the 4′‐position of the biphenyl pendants (poly‐ Ac 's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis transoidal ) poly‐ Ac 's folded into a predominantly one‐handed helical conformation accompanied by a preferred‐handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main‐chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly‐ Ac 's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2‐ and 2′‐positions of the biphenyl pendants (poly‐ MOM 's). In the solid state, however, the helicity memory of the poly‐ Ac 's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly‐ MOM when used as a chiral stationary phase for high‐performance liquid chromatography. In particular, the poly‐ Ac ‐based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.  相似文献   

5.
One‐handed helical polyphenylacetylenes having achiral amino alcohol moieties, but no chiral side groups, were synthesized by the helix‐sense‐selective copolymerization of an achiral phenylacetylene having an amino alcohol side group with a phenylacetylene having two hydroxyl groups. Since the resulting helical copolymers were successfully utilized as chiral ligands for the enantioselective alkylation of benzaldehyde with diethylzinc, we can conclude that the main‐chain chirality based on the one‐handed helical conformation is useful for the chiral catalysis of an asymmetric reaction for the first time. The enantioselectivities of the reaction were controlled by the optical purities of the helical polymer ligands. In addition, the polymer ligands could be easily recovered by precipitation after the reaction. Chirality 27:454–458, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Vibrational circular dichroism (VCD) and IR absorption spectra are obtained in a chloroform solution for poly[gamma-((R)-alpha-phenethyl)-L-glutamate] (PRPLG) and poly[gamma-((S)-alpha-phenethyl)-L-glutamate] (PSPLG), whose only structural difference is an opposite chiral center in the side chain. Their characteristic amide A, I, and II bands show VCD patterns quite similar to those of poly[gamma-benzyl-L-glutamate] (PBLG), indicating that the secondary structure of these polypeptides is a right-handed alpha-helix. The VCD spectra in the CH stretching region exhibit different patterns for PRPLG and PSPLG, reflecting the chirality difference in the side chains. This difference is interpreted on the basis of the additivity of optical activity contributions from the main chain conformation and the chirality difference in the side chains. The results indicate that a VCD difference spectrum of the CH stretching region is a useful diagnostic tool for elucidating local chirality differences.  相似文献   

7.
The present work is devoted to the synthesis, conformational analysis, and stereodynamic study of aza‐β3‐cyclodipeptides. This pseudopeptidic ring shows E/Z hydrazide bond isomerism, eight‐membered ring conformation, and chirotopic nitrogen atoms, all of which are elements that are prone to modulate the ring shape. The (E,E) twist boat conformation observed in the solid state by X‐ray diffraction is also the ground conformation in solution, and emerges as the lowest in energy when using quantum chemical calculations. The relative configuration associated with ring chirality and with the two nitrogen chiral centers is governed by steric crowding and adopts the (P)SNSN/(M)RNRN combination which projects side chains in equatorial position. The nitrogen pyramidal inversion (NPI) at the two chiral centers is correlated with the ring reversal. The process is significantly hindered as was shown by VT‐NMR experiments run in C2D2Cl4, which did not make it possible to determine the barrier to inversion. Finally, these findings make it conceivable to resolve enantiomers of aza‐β3‐cyclodipeptides by modulating the backbone decoration appropriately. Chirality 25:341–349, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The five‐steps synthesis of a hemicryptophane cage combining a benzene‐1,3,5‐tricarboxamide unit and a cyclotriveratrylene (CTV) moiety is described. Chiral high‐performance liquid chromatography (HPLC) was used to resolve the racemic mixture. The absolute configuration of the isolated enantiomers was assigned by comparison of the experimental electronic circular dichroism (ECD) spectra with the calculated ones. X‐ray molecular structures reveal that the capped benzene‐1,3,5‐tricarboxamide unit adopts a structurally chiral conformation in solid state: the chirality of CTV moiety controls the Λ or Δ orientation of the three amides.  相似文献   

9.
We studied the interaction of poly‐l ‐lysine (PLL) and poly‐l ‐arginine (PLAG) with sodium dodecyl sulfate (SDS) surfactant and the interaction of poly‐l‐ glutamic acid (PLGA) and poly‐l ‐aspartic acid (PLAA) with tetradecyltrimethylammonium bromide (TTAB) surfactant using vibrational circular dichroism (VCD) spectroscopy in the region of C‐H stretching vibration and in the Amide I region both in solution and in mulls. A chirality transfer from polypeptides to achiral surfactants was observed in the C‐H stretching region, where measurements in solution were impossible. This observation was enabled by a special sample treatment technique using lyophilization and the preparation of mulls. This technique demonstrated itself as an interesting and beneficial tool for VCD measurements. In addition, we observed that SDS changed the secondary structure of PLL to the β‐sheet and of PLAG to the α‐helix. TTAB disrupted the PLGA and PLAA structure. These results were obtained in the mull but were confirmed by the VCD spectra measured in solution and by electronic circular dichroism. The chirality transfer from the polypeptides to SDS was caused by polypeptides ordered into a specific conformation during the interaction, while in the TTBA system it was induced primarily by the chirality of the amino acid residues. Chirality 27:965–972, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
A synergetic law, being of common physicochemical and biological sense, is formulated: any evolving system that possesses an excess of free energy and elements with chiral asymmetry, while being within one hierarchical level, is able to change the type of symmetry in the process of self-organization increasing its complexity but preserving the sign of prevailing chirality (left — L or right — D twist). The same system tends to form spontaneously a sequence of hierarchical levels with alternating chirality signs of de novo formed structures and with an increase of the structures’ relative scales. In living systems, the hierarchy of conjugated levels of macromolecular structures that begins from the “lowest” asymmetric carbon serves as an anti-entropic factor as well as the structural basis of “selected mechanical degrees of freedom” in molecular machines. During transition of DNA to a higher level of structural and functional organization, regular alterations of the chirality sign D-L-D-L and L-D-L-D for DNA and protein structures, respectively, are observed. Sign-alternating chiral hierarchies of DNA and protein structure, in turn, form a complementary conjugated chiral pair that represents an achiral invariant that “consummates” the molecular-biological block of living systems. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development though a series of chiral bifurcations. The hierarchy of macromolecular structures demarcated by the chirality sign predetermined the possibility of the “block” character of biological evolution.  相似文献   

11.
We here clarify whether noncovalent chiral domino effect characterized by the terminal interaction of a helical peptide with a chiral small molecule can alter the helical stability of N-deprotected peptides containing an L-residue covalently incorporated into the inner position. Two nonapeptides consisting of the midpoint L-leucine (1) or L-phenylalanine (2) and the achiral helix-forming residues were employed. NMR and IR spectroscopy and energy calculation indicated that both peptides adopt a 3(10)-helical conformation in chloroform. They strongly preferred a right-handed screw sense because of the presence of the midpoint L-residue. These original right-handed screw senses were retained on addition of chiral Boc-amino acid, but their helical stabilities clearly depended on its added chirality. Here, Boc-L-amino acid stabilizes the original right-handed helix, whereas the corresponding Boc-D-amino acid tends to less stabilize or destabilize it. This tendency was not observed for the corresponding N-Boc-protected peptides 1 and 2, strongly suggesting that the N-terminal amino group is required for controlling the stabilization of the original right-handed helix. Therefore, noncovalent chiral domino effect in peptides 1 and 2 can contribute even to the helical stability of a chiral peptide prevailing one-handed helix strongly through the midpoint L-residue. In addition, the N-terminal moiety of a 3(10)-helical peptide was found to generate chiral discrimination in complexation process with racemic additives.  相似文献   

12.
The anionic H2TPPS porphyrin and its copper derivative, CuTPPS, form in aqueous solution hetero-aggregates with the cationic H2T4 porphyrin and its copper derivative, CuT4. In the presence of poly-L-glutamate, at pH 4.0, a CD signal appears in the Soret region of the spectrum, indicating that the polypeptide has induced chirality into the structure of the aggregates. These species exhibit remarkable inertness due to the strength and number of the coulombic interactions between the anionic and the cationic porphyrins. This property allows them to preserve the chiral structure, even when the matrix changes or loses its chiral conformation, demonstrating that these aggregates are capable of memorizing the chiral information. The remarkable properties of the title systems may find various applications (chiral amplification, discrimination, and separation) that, on the other hand, require a more strict control of the aggregate dimension. Here, we show that the central copper of these macrocycles is crucial for determining the aggregate dimension.  相似文献   

13.
14.
L D Barron 《Bio Systems》1987,20(1):7-14
Physical systems which exhibit distinguishable enantiomers under space inversion are not necessarily chiral. A new definition of chirality is proposed that enables true and false chirality to be distinguished. Although spatial enantiomorphism is sufficient to guarantee chirality in a stationary object, enantiomorphous systems are not necessarily chiral when motion is involved. Only a truly chiral influence can induce absolute asymmetric synthesis in a reaction mixture at thermodynamic equilibrium, but false chirality might suffice if equilibrium is not attained. Parity violation lifts only the degeneracy of enantiomers of truly chiral systems, the true enantiomers (i.e. strictly degenerate) being interconverted by space inversion together with charge conjugation. The time-independence of optical activity arising from parity violation is contrasted with the time-dependence of that arising from spontaneous parity breaking.  相似文献   

15.
16.
Oligo(lactic acid) is an ester‐analogue of short oligoalanine sequence and adopts a rigid left‐handed helical structure. In this study, oligo(lactic acid) was incorporated into oligoalanine sequences and their conformations were studied by vibrational circular dichroism and electronic circular dichroism spectroscopy. The results suggested that oligo(lactic acid) moiety in these sequences maintains a left‐handed helix and increases the conformational propensity of the oligoalanine moiety to form a left‐handed polyproline type II‐like helix. The importance of the chirality of oligo(lactic acid) moiety for the oligoalanine conformation was also studied. The results obtained in this study should be useful in developing ester‐containing oligopeptides that function better than normal peptides.  相似文献   

17.
18.
《Chirality》2017,29(12):774-797
Molecular chirality is a key concept in chemistry, bioscience, and molecular technology, like the invention of a light‐powered chiral molecular motor explained in this review. Thus, the primary research subject is how to determine the absolute configuration (AC) of chiral compounds. This review article focuses on the principle, theory, and practice of the nonempirical methods for determining ACs of chiral compounds, i.e., the Bijvoet method in X‐ray crystallography and the circular dichroism (CD) exciton chirality method, together with the historical aspects of AC determination. The theoretical equations of X‐ray crystallography and exciton CD spectroscopy are explained in detail, and these equations are useful for readers to understand the principle and mechanism of these methods. This review also focuses on the relative methods, where the internal reference with known AC is used and the relative configuration is determined by X‐ray crystallography and/or 1H nuclear magnetic resonance (NMR) diamagnetic anisotropy method. In these cases, CSDP acid and MαNP acid are useful for the chiral resolution of racemic alcohols, where their diastereomeric esters are easily separable by high‐performance liquid chromatography (HPLC) on silica gel. Thus, these methods are useful for the preparation of enantiopure compounds and simultaneous determination of their ACs. In this review article, the above methods are explained mainly based on the author's own research results.  相似文献   

19.
This review is devoted to the chiral optical behavior of films of racemic polymers whose chirality is induced by cocrystallization with nonracemic (also temporary) guest molecules. We provide examples of macromolecular amplification of chirality, produced by molecular and supramolecular mechanisms, on industrially relevant polymers like poly(2,6‐dimethyl‐1,4‐phenylene)oxide (PPO) and syndiotactic polystyrene (s‐PS). Chirality 28:29–38, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Four poly(phenylacetylene)s ( PPA-1 , PPA-2 , PPA-3 , PPA-4 ) bearing phenylcarbamate residues of L ‐phenylglycinol and amide linkage as pendants were prepared to be used as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC), and the influences of coating solvents, dimethylformamide (DMF) and tetrahydrofuran (THF), which were used for coating the polymers on silica gel, on the helical structure of the polymers and their chiral recognition abilities were investigated. The structure analysis of PPA-1 , PPA-2 , PPA-3 , PPA-4 by 1H nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), optical rotation, and circular dichroism (CD) spectra indicated that the polymers possess the cis‐transoidal structure with dynamic helical conformation. The polymers in THF seem to have shorter conjugated helical main chains along with a tighter twist conformation than those in DMF. The chiral recognition abilities of PPA-1 , PPA-2 , PPA-3 , PPA-4 with the different helical structures induced by the coating solvents were evaluated as the CSPs in HPLC. The helical structures of PPA-1 , PPA-2 , PPA-3 , PPA-4 induced with THF are preferable for chiral recognition for some racemates compared to those induced with DMF, and higher chiral recognition abilities of PPA-1 , PPA-2 , PPA-3 , PPA-4 were achieved using THF. Chirality 27:500–506, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号