首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high‐performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD‐RH, Chiralpak AY‐H, Chiralpak AD‐H, Chiracel OJ‐H, (R,R)‐Whelk‐O 1, and Lux Cellulose‐3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY‐H, or Chiracel OJ‐H under normal conditions. Chiralcel OJ‐H showed the best chiral separation results with n‐hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ‐H under optimized condition: n‐hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites A , C , and D obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose‐3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level. Chirality 28:245–252, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
To obtain milligram amounts of the enantiomers of benzoxazolinone derivatives to be tested for binding to adrenergic sites, analytical HPLC methods using derivatized amylose chiral stationary phases were developed for the direct enantioseparation of benzoxazolinone aminoalcohols and their aminoketone precursors, derivatives with one or two chirals centers. The separations were made using normal phase methodology with a mobile phase of n‐hexane‐alcohol (ethanol, 1‐propanol, or 2‐propanol) in various proportions, and silica‐based amylose (tris‐3, 5‐dimethylphenylcarbamate) Chiralpak AD and (tris‐(S)‐1‐phenylethylcarbamate) Chiralpak AS columns. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The best separation was achieved on Chiralpak AS, so preparative HPLC was set up with this chiral stationary phase using a mobile phase consisting of n‐hexane‐alcohol using isocratic conditions and multiple repetitive injections. Physicochemicals properties of enantiomers were reported The effect of structural features of the solutes on discrimination between the enantiomers was examined. Limit of detection (LD) and limit of quantification (LQ) were determined using both ultra‐violet (UV) and evaporative light‐scattering detection (ELSD). Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Bonded polysaccharide‐derived chiral stationary phases were found to be useful for the preparation of the four stereoisomers of the cyclopropane analogue of phenylalanine (c3Phe) as well as for the direct determination of the enantiomeric purity of c3Phe derivatives by HPLC. Three chiral stationary phases, consisting of cellulose and amylose derivatives chemically bonded on allylsilica gel, were tested. The mixed 10‐undecenoate/3,5‐dimethylphenylcarbamate of cellulose, 10‐undecenoate/3,5‐dimethylphenylcarbamate of amylose and 10‐undecenoate/p‐methylbenzoate of cellulose were the starting polysaccharide derivatives for CSP‐1, CSP‐2, and CSP‐3, respectively. Using mixtures of n‐hexane/chloroform/2‐propanol as mobile phase on a semi‐preparative column (150 mm × 20 mm ID) containing CSP‐2, we separated about 1.7 g of racemic cis‐methyl 1‐tert‐butoxycarbonylamino‐2‐phenylcyclopropanecarboxylate (cis‐ 6 ) and 1.2 g of racemic trans‐methyl‐1‐tert‐butoxycarbonylamino‐2‐phenylcycloprop‐anecarboxylate (trans‐ 6 ) by successive injections. Chirality 11:583–590, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
An optical resolution of the amide derivatives of ibuprofen and the carbamate-alkylester derivatives of the trans-alcohol metabolite of loxoprofen and an analogous compound, CS-670, was studied by chiral high-performance liquid chromatography (HPLC). The chiral columns SUMIPAX OA-4000 and OA-4100 were used to investigate the enantiomeric separation behavior of these derivatives using both reversed and normal mobile phases. A better separation factor (α) of the amide and the carbamate ester derivatives was obtained in the normal mobile phase than in the reversed mobile phase HPLC. In addition, the recognition mechanisms of both amide and carbamate ester enantiomers were investigated by 1H-nuclear magnetic resonance (NMR). It is suggested that the important driving forces for the enantiomeric separation are the formation of hydrogen bonding and the charge transfer complex between these derivatives and an active site of the chiral stationary phase. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high‐performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n‐hexane and iso‐propanol (IPA) (80/20 v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R‐clausenamidone and S‐clausenamidone and R‐neoclausenamidone and S‐ neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15 K. Furthermore, docking modeling showed that the hydrogen bonds and π‐π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.  相似文献   

6.
Both enantiomers of petromyroxol are putative pheromones in sea lamprey (Petromyzon marinus). Here, we describe the separation and quantification of the petromyroxol enantiomers using high‐performance liquid chromatography tandem mass spectrometry. The separation was tested on a wide range of chiral columns with normal phases, and effects of the chromatographic parameters such as mobile phase and temperature on the separation were optimized. The AD‐H column showed the best separation of enantiomers with n‐hexane and ethanol as the mobile phase. The enantiomers were detected by multiple reaction monitoring with a positive atmospheric‐pressure chemical ionization on triple quadrupole mass spectrometer. Validation revealed that the method was specific, accurate, and precise. The validated method was applied to measure the amount of petromyroxol enantiomers in water conditioned with sea lamprey larvae, the source of the putative pheromone. This method will be applied in quantifying the natural scalemic petromyroxol mixture, enabling further investigations of a rare non‐racemic enantiomeric pheromone mixture in a vertebrate species.  相似文献   

7.
A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5‐dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n‐hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S‐enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink′ versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose–based chiral stationary phase  相似文献   

8.
Chiral high‐performance liquid chromatography (HPLC) separation and modeling of four stereomers of DL‐leucine‐tryptophan DL‐dipeptide on AmyCoat‐RP column are described. The mobile phase applied was ammonium acetate (10 mM)‐methanol‐acetonitrile (50:5:45, v/v). The flow rate of the mobile phases was 0.8 mL/min with UV detection at 230 nm. The values of retention factors for LL‐, DD‐, DL‐, and LD‐ stereomers were 2.25, 3.60, 5.00, and 6.50, respectively. The values of separation and resolution factors were 1.60, 1.39, and 1.30 and 7.76, 8.05, and 7.19. The limits of detection and quantitation were ranging from 1.0–2.3 and 5.6–14.0 μg/mL. The simulation studies established the elution orders and the mechanism of chiral recognition. It was seen that π–π connections and hydrogen bondings were the main forces for enantiomeric resolution. The reported chiral HPLC method may be applied for the enantiomeric separation of DL‐leucine‐DL‐tryptophan in unknown matrices. Chirality 28:642–648, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Solid phase extraction ( SPE)‐chiral separation of the important drugs pheniramine, oxybutynin, cetirizine, and brinzolamide was achieved on the C18 cartridge and AmyCoat (150 x 46 mm) and Chiralpak AD (25 cm x 0.46 cm id) chiral columns in human plasma. Pheniramine, oxybutynin, cetirizine, and brinzolamide were resolved using n‐hexane‐2‐PrOH‐DEA (85:15:0.1, v/v), n‐hexane‐2‐PrOH‐DEA (80:20:0.1, v/v), n‐hexane‐2‐PrOH‐DEA (70:30:0.2, v/v), and n‐hexane‐2‐propanol (90:10, v/v) as mobile phases. The separation was carried out at 25 ± 1 ºC temperature with detection at 225 nm for cetirizine and oxybutynin and 220 nm for pheniramine and brinzolamide. The flow rates of the mobile phases were 0.5 mLmin‐1. The retention factors of pheniramine, oxybutynin, cetirizine and brinzolamide were 3.25 and 4.34, 4.76 and 5.64, 6.10 and 6.60, and 1.64 and 2.01, respectively. The separation factors of these drugs were 1.33, 1.18, 1.09 and 1.20 while their resolutions factors were 1.09, 1.45, 1.63 and 1.25, and 1.15, respectively. The absolute configurations of the eluted enantiomers of the reported drugs were determined by simulation studies. It was observed that the order of enantiomers elution of the reported drugs was S‐pheniramine > R‐pheniramine; R‐oxybutynin > S‐oxybutynin; S‐cetirizine > R‐cetirizine; and S‐brinzolamide > R‐brinzolamide. The mechanism of separation was also determined at the supramolecular level by considering interactions and modeling results. The reported SPE‐chiral high‐performance liquid chromatography ( HPLC) methods are suitable for the enantiomeric analyses of these drugs in any biological sample. In addition, simulation studies may be used to determine the absolute configuration of the first and second eluted enantiomers. Chirality 26:136–143, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
《Chirality》2017,29(9):512-521
Six novel regioselectively substituted amylose derivatives with a benzoate at 2‐position and two different phenylcarbamates at 3‐ and 6‐positions were synthesized and their structures were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy. Their enantioseparation abilities were then examined as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after they were coated on 3‐aminopropyl silica gels. Investigations indicated that the substituents at the 3‐ and 6‐positions played an important role in chiral recognition of these amylose 2‐benzoate serial derivatives. The derivatives demonstrated characteristic enantioseparation and some racemates were better resolved on these derivatives than on Chiralpak AD, which is one of the most efficient CSPs, utilizing coated amylose tris(3,5‐dimethylphenylcarbamate) as the chiral selector. Among the derivatives prepared, amylose 2‐benzoate‐3‐(phenylcarbamate/4‐methylphenylcarbamate)‐6‐(3,5‐dimethylphenylcarbamate) exhibited chiral recognition abilities comparable to that of Chiralpak AD and may be useful CSPs in the future. The effect of mobile phase on chiral recognition was also studied. In general, with the decreased concentration of 2‐propanol, better resolutions were obtained with longer retention times. Moreover, when ethanol was used instead of 2‐propanol, poorer resolutions were often achieved. However, in some cases, improved enantioselectivity was achieved with ethanol rather than 2‐propanol as the mobile phase modifier.  相似文献   

11.
Cellulose‐tris(3,5‐dimethylphenylcarbamate) was prepared after a reported method and was coated onto an aminopropylated mesopore spherical silica gel. The final product was used as a chiral stationary phase of high performance liquid chromatography for the enantioseparation of a series of glycerin sulfides and glycerin selenides. Mixtures of hexane and 2‐propanol were used as mobile phases. The effects of 2‐propanol concentration in the mobile phase on the retention and resolution were investigated. Some enantiomers of the glycerin monosulfides and monoselenides could be separated satisfactorily, but none of the disulfides could be separated. The structural features of the solutes that influence chiral separation were discussed. Chirality 11:598–601, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA‐CSP) by high‐performance liquid chromatography (HPLC) in reversed‐phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N‐(2, 4‐dinitrophenyl)‐serine (DNP‐ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (Rs) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N‐(2, 4‐dinitrophenyl)‐proline (DNP‐pro) decrease along with increasing 1‐propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods. Chirality 25:487–492, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Perfluorooctane sulfonate (PFOS) is one of the most frequently detected perfluoroalkyl substances in environmental and human samples. Previous studies have shown that nonracemic PFOS in biological samples can be used as a marker of PFOS exposure sources. In recent years, supercritical fluid chromatography (SFC) has emerged as a powerful method to separate chiral compounds. In this study, a method of perfluoro‐1‐methylheptane sulfonate (1 m‐PFOS) enantioseparation by SFC was established. The optimal separation was obtained using a Chiralpak QN‐AX column with CO2/2‐propanol (70/30, v/v) as the mobile phase with a flow rate of 1 mL/min, column temperature was 32°C, and BPR pressure was 1800 psi. The resolution (Rs) and retention time were 0.88 and 130 minutes, respectively. This method is more economic and greener than HPLC. Modifier pH and column temperature were determined to be significant factors of SFC chiral separation. Modifier pH is negatively correlated with the retention factors and Rs. Adsorption thermodynamics were used to explain the influence of temperature change, and it was concluded that the transfer of two enantiomers from the mobile phase to the stationary phase is enthalpy‐driven. Enantioseparation of 1 m‐PFOS by SFC follows the same rules of ion exchange as those for the chiral separation by HPLC.  相似文献   

14.
The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda‐cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose‐1, Lux Cellulose‐3, and Chiralpak IC chiral columns was investigated by reversed‐phase high‐performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose‐1 column and baseline separation on Lux Cellulose‐3 column, while LCT enantiomers could be completely separated on both Lux Cellulose‐1 and Lux Cellulose‐3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ?H and ?S were also calculated, and the maximum Rs were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed‐phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level.  相似文献   

15.
《Chirality》2017,29(3-4):147-154
Separations of six dihydropyridine enantiomers on three commercially available cellulose‐based chiral stationary phases (Chiralcel OD‐RH, Chiralpak IB, and Chiralpak IC) were evaluated with high‐performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol‐modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n‐hexane/isopropanol (85:15, v /v) for nimodipine (R  = 5.80) and cinildilpine (R  = 5.65); n‐hexane/isopropanol (92:8, v /v) for nicardipine (R  = 1.76) and nisoldipine (R  = 1.92); and n‐hexane/isopropanol/ethanol (97:2:1, v /v/v) for felodipine (R  = 1.84) and lercanidipine (R  = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.  相似文献   

16.
Because chiral liquid chromatography (LC) could become a powerful tool to estimate racemic atenolol quantity, excellent enantiomeric separation should be produced during data acquisition for satisfactory observation of atenolol concentrations throughout the racemic resolution processes. Selection of chiral LC column and analytical protocol that fulfill demands of the ultra fast LC analysis is essential. This article describes the characteristics of atenolol chromatographic separation that resulted from different resolution media and analytical protocols with the use of a Chiralcel® OD column. The chromatograms showed quite different characteristics of the separation process. The single enantiomer and racemic atenolol could be recognized by the Chiralcel® OD column in less than 20 min. Symmetrical peaks were obtained; however, several protocols produced peaks with wide bases and slanted baselines. Observations showed that efficient enantioresolution of racemic atenolol was obtained at slow mobile phase flow rate, decreased concentration of amine‐type modifier but increased alcohol content in mobile phase and highest ultraviolet detection wavelength were required. The optimal ultra fast LC protocol enables to reduce and eliminate the peaks of either the atenolol solvent or the buffers and provided the highest peak intensities of both atenolol enantiomers. Chirality 24:356–367, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
High‐performance liquid chromatographic methods were developed for the separation of the enantiomers of 19 β‐lactams. The direct separations were performed on chiral stationary phases containing either amylose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® AmyCoat? column) or cellulose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® CelluCoat? column) as chiral selector. The different methods were compared in systematic chromatographic examinations. The separations were carried out with good selectivity and resolution. The AmyCoat? and CelluCoat? columns appear to be highly complementary. The best separations of bi‐ and tricyclic β‐lactam stereoisomers were obtained with the AmyCoat? column, whereas the 4‐aryl‐substituted β‐lactams were better separated on the CelluCoat? column. The elution sequence was determined in all cases; no general rule could be established. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO2. In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide‐type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back‐pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO2 with 20% 2‐propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2‐propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back‐pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns.  相似文献   

19.
The preparative separation of the enantiomers of the title compound, a versatile chiral building block for the synthesis of unnatural amino acid esters, by high performance liquid chromatography on a chiral stationary phase (CSP), is reported for the first time. The CSP consists of amylose-(3,5-dimethylphenyl-carbamate), which has been coated onto the surface of macroporous aminopropyl-functionalized silica gel. The effect of mobile phase composition and the amount of amylose derivative on the silica gel has been thoroughly investigated. Using 2-propanol as organic modifier in hexane as mobile phase, on a semi-preparative column (200 mm × 40 mm ID, containing 192 g of stationary phase) about 200 mg of the racemate was separated per injection. Running the equipment under automatic conditions with repetitive injection mode allowed for the separation of 30 g per day. Both enantiomers were obtained with enantiopurities >99.75:0.25. Chirality 10:217222, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Paola Peluso  Sergio Cossu 《Chirality》2013,25(11):709-718
With the aim to define a combined computational/chromatographic empirical approach useful for the high‐performance liquid chromatography (HPLC) method development of new chiral compounds, 36 racemic aromatic compounds with different chemical structures were used as test probes on four polysaccharide‐based chiral stationary phases (CSPs) of the Lux series, namely Lux Cellulose‐1, Lux Cellulose‐2, Lux Cellulose‐4, and Lux Amylose‐2, using classical n‐hexane/2‐propanol mixtures as mobile phase. Electrostatic potential surfaces (EPSs) determined using Density Functional Theory (DFT) calculations were used to derive size, shape, and electronic properties of each analyte. Then a comparative HPLC screening was carried out in order to evaluate the impact of substituents, shapes, and electronic properties of the analytes on the chromatographic behavior as the column changes. The four CSPs showed good complementary recognition ability. The elution sequence was determined in 30 cases out of 36. The success rate to afford baseline separations (Rs ≥ 1.5) was estimated: 29 compounds out of 36 showed baseline enantioseparation on at least one of the four selected CSPs. The combined computational‐chromatographic screening furnished useful collective structure‐chromatographic behavior relationships and a map of the chiral discrimination abilities of the considered CSPs towards the analytes. On this basis, the chromatographic behavior of new analytes on a set of polysaccharide‐based CSPs can be mapped through the qualitative correlation of chromatographic parameters (k, α, Rs) to computed molecular properties of the analytes. Chirality 25:709–718, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号