首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tang S  Li X  Wang F  Liu G  Li Y  Pan F 《Chirality》2012,24(2):167-173
Four regioselective-carbamoylated cellulose derivatives having two different substituents at 2-, 3-, and 6-position were prepared and evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography. Investigations showed that the nature and arrangement of the substituents significantly influenced the chiral recognition abilities of the heterosubstituted cellulose derivatives and each derivative exhibited characteristic enantioseparation. Some racemates were better resolved on these derivatives than the corresponding homogeneously substituted cellulose derivatives including a commercial CSP, Chiralcel OD. Racemic compounds shown in this study were most effectively discriminated on cellulose 2,3-(3-chloro-4-methylphenylcarbamate)-6-(3,5-dimethylphenylcarbamate) and 2,3-(3,5-dimethylphenylcarbamate)-6-(3-chloro-4-methylphenylcarbamate).  相似文献   

2.
This study describes the enantioseparation of three chiral amines as naphthaldimine derivatives, using normal phase HPLC with amylose and cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (CSPs). Three chiral amines were derivatized using three structurally similar naphthaldehyde derivatizing agents, and the enantioselectivity of the CSPs toward the derivatives was examined. The degree of enantioseparation and resolution was affected by the amylose or cellulose-derived CSPs and aromatic moieties as well as a kind of chiral amine. Especially, efficient enantiomer separation was observed for 2-hydroxynapthaldimine derivatives on cellulose-derived CSPs. Molecular docking studies of three naphthaldimine derivatives of leucinol on cellulose tris(3,5-dimethylphenylcarbamate) were performed to estimate the binding energies and conformations of the CSP–analyte complexes. The obtained binding energies were in good agreement with the experimentally determined enantioseparation and elution order.  相似文献   

3.
The regioselectively substituted amylose derivatives bearing a 4‐tert‐butylbenzoate or 4‐chlorobenzoate group at 2‐position, and 3,5‐dichlorophenylcarbamate and a small amount of 3‐(triethoxysilyl)propylcarbamate groups at 3‐ and 6‐positions were synthesized by a two‐step process based on the esterification of 2‐position of a glucose unit. The obtained derivatives were effectively immobilized onto macroporous silica gel by intermolecular polycondensation of triethoxysilyl groups. Their chiral recognition abilities were evaluated as chiral packing materials (CPMs) for high‐performance liquid chromatography. These CPMs showed high chiral recognition as well as the conventional coated‐type CPM, and can be used with the eluents‐containing chloroform and tetrahydrofuran. With the extended use of these eluents, improvement of chiral recognition and reversed elution orders were realized. For some racemates, the immobilized CPM exhibited ability comparable or better to the commercial immobilized amylose‐ or cellulose‐based columns, Chiralpak IA, IB, and IC. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
Four 4-halogen-substituted phenylcarbamate derivatives of amylose were prepared and their chiral recognition abilities as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were evaluated and compared with those of the corresponding cellulose derivatives. The amylose derivatives with fluoro, chloro, bromo, or iodo group at the four-position on the phenyl group were found to show higher chiral resolving ability than the corresponding cellulose derivatives. Among four amylose derivatives 4-fluoro- and 4-chlorophenylcarbamates showed an excellent chiral recognition ability. Especially, amylose tris(4-chlorophenylcarbamate) resolved (±)-1,2,2,2-tetraphenylethanol with a very high α value (α = 8.29). In order to obtain useful information concerning the chiral recognition mechanism of this resolution, we also performed enantioseparation of a variety of analogous racemic alcohols, and found that both the hydroxy and bulky triphenylmethyl groups of the racemate are essential for the effective chiral recognition. Chirality 9:63–68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
A small amount of 4‐(trimethoxysilyl)phenyl groups was randomly introduced onto the 3,5‐dimethylphenylcarbamates of cellulose and amylose by a one‐pot method. The obtained derivatives were then effectively immobilized onto silica gel as chiral packing materials (CPMs) for high‐performance liquid chromatography through intermolecular polycondensation of the trimethoxysilyl groups. The effects of the amount of 4‐(trimethoxysilyl)phenyl groups on immobilization and enantioseparation were investigated. Also, the solvent durability of the immobilized‐type CPMs was examined with the eluents containing chloroform and tetrahydrofuran. When these eluents were used, the chiral recognition abilities of the CPMs for most of the tested racemates were improved to some extent depending on the compounds. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Various cellulose-2,3-bis-arylcarbamate-6-O-arylesters and cellulose-2,3-bis-arylester-6-O-arylcarbamates, designed to test the possible combined effects of the known tris-arylcarbamate and tris-arylester classes, were synthesized with high regioselectivity at O-C(6), and their use as CSP s in liquid chromatography for enantiomeric separations was investigated. The separations obtained with the synthesized CSP s were compared to the separations achieved on a self-packed reference column, consisting of cellulose-tris-(3,5-dimethylphenyl-carbamate) as CSP standard. Among the synthesized, regioselectively substituted cellulose derivatives, 2,3-bis-O-(3,5-dimethylphenylcarbamate)-6-O-benzoate-cellulose and 2,3-bis-O-(benzoate)-6-O-(3,5-dichlorophenylcarbamate)-cellulose gave the best CSP s for the separation of the test racemates. CSP s from regioselectively substituted cellulose derivatives seem to exhibit higher selectivities than cellulose-tris-(3,5-dimethylphenylcarbamate) for certain classes of racemic compounds. Chirality 10:294–306, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The effect of structural features of six pairs of enantiomers of cannabimimetic compounds on their chromatographic resolution on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase was studied using various compositions of n-hexane with 2-propanol and ethanol. Structural analysis by molecular mechanics was also performed to verify that the 3D conformation within this family of compounds was preserved with substitution. The homologous enantiomeric pairs showed better resolution when there was an additional OH group near the chiral centers (position 7 on the cannabinoid structure). Better resolution was observed also for the enantiomeric pair that had the smaller alkyl side chain. These differences indicated that the additional OH group contributed to a better discrimination of the enantiomers by the chiral sites of the stationary phase and that the bulkier alkyl side chain reduced it. The chromatographic resolution of two enantiomeric pairs of nonclassical cannabinoids HU-249 and HU-250, HU-255 and HU-256, was compared both in ethanol and 2-propanol. Both enantiomeric pairs showed relatively high resolution and selectivity, but the rigid benzofuran analogs (HU-249 and HU-250) exhibited better resolution using 2-propanol, in spite of the flexibility of the open chain analog (HU-255 and HU-256) and its additional OH group. The elution order of all the cannabinoids was (+)/(?) using both solvents. Unusual solvent effects were displayed by one enantiomeric pair, Δ6-THC, which was resolved easily using 2-propanol, but whose elution order reversed with 1% ethanol in the mobile phase. Partial separation was obtained at 5% ethanol [elution order (+)/(?)] and full separation was obtained at 0.5% ethanol [elution order (?)/(+)]. © 1995 Wiley-Liss, Inc.  相似文献   

8.
A convenient method using a fluorogenic agent, 4‐chloro‐7‐nitro‐1,2,3‐benzoxadiazole (NBD‐Cl), was developed for enantiomer separation of chiral aliphatic amines including amino alcohols by normal high‐performance liquid chromatography. The enantiomer separation of chiral aliphatic amines as NBD derivatives was performed on six covalently bonded and four coated‐type polysaccharide‐derived chiral stationary phases (CSPs) under simultaneous ultraviolet (UV) and fluorescence detection (FLD). Among the covalently bonded CSPs, Chiralpak IE showed the best enantiomer separation for most analytes. The other CSPs also showed good enantioselectivity except for Chiralpak IB. On the other hand, Chiralpak AD‐H and Amylose‐1 generally exhibited better enantiomer separation of NBD derivatized chiral amines among the coated CSPs. The developed analytical technique was also applied to determine the optical purity of commercially available (R)‐ and (S)‐leucinol; the impurity was found to be 0.06%. The developed method was validated and proved to be an accurate, precise, sensitive, and selective method suitable for separation of chiral aliphatic amines as NBD derivatives under simultaneous UV and FLD.  相似文献   

9.
Kubota T  Yamamoto C  Okamoto Y 《Chirality》2002,14(5):372-376
Cyclopentyl and (+/-)-exo-2-norbornylcarbamates of cellulose and amylose were prepared and their chiral recognition abilities as chiral stationary phases for high-performance liquid chromatography (HPLC) were evaluated. Among these carbamates, cellulose tris(cyclopentylcarbamate) and amylose tris((+/-)-exo-2-norbornylcarbamate) showed particularly high chiral recognition, which is comparable to that of several well-known phenylcarbamate derivatives. The chiral recognition mechanism of cellulose tris(cyclohexylcarbamate), which was previously found to be an effective chiral stationary phase for HPLC, was investigated using NMR spectroscopy. The derivative dissolved in chloroform exhibited the chiral discrimination of several enantiomers in NMR as well as in HPLC. For example, the 1,1'-bi-2-naphthol enantiomers were distinctly discriminated in the (1)H, (13)C, and 2D-NOESY spectra.  相似文献   

10.
Phenylcarbonate, benzoylformate, and p-toluenesulfonylcarbamate of cellulose and five new benzoylcarbamate derivatives of both cellulose and amylose were synthesized and their chiral recognition abilities were evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Cellulose benzoylcarbamate has a higher chiral recognition ability compared to phenylcarbonate, p-toluenesulfonylcarbamate, and benzoylformate of cellulose. The benzoylcarbamate derivatives exhibited a characteristic chiral recognition for the racemates, which bear a hydrogen atom capable of hydrogen bonding to the carbonyl group of the benzoylcarbamates. The structures of the benzoylcarbamates were investigated by CD spectroscopy.  相似文献   

11.
《Chirality》2017,29(7):386-397
Chiral resolution of baclofen, bupropion, and etodolac profens was obtained with amylose derivatized chiral reversed stationary phase (carbamate groups). The eluent used for bupropion and etodolac was MeOH–water (20:80, v /v) and for baclofen was water–methanol (95:5, v /v). The eluent run rates, finding wavelength and temperature, were 1.0 mL/min, 220 nm and 27 ± 1 °C for all the eluents. The magnitude of the retardation factors for S‐ and R‐enantiomers of baclofen, bupropion, and etodolac were 1.37, 2.62, 2.25, 3.25, 1.8, and 3.0. The magnitudes of separation and resolution factors were 1.90, 1.44, and 1.67 and 2.77, 2.35, and 2.04. Limits of detection and quantitation were 1.0–2.0 and 5.1–10.0 μg/mL. Chiral recognition mechanisms were recognized by simulation and high‐performance liquid chromatography (HPLC) experiments. It was seen that hydrogen interactions, hydrophobic interactions, and π–π exchanges were the chief interactions for chiral recognition mechanisms. The described methods may be exploited for the chiral separation of baclofen, bupropion, and etodolac profens in any unknown sample.  相似文献   

12.
A novel high‐performance liquid chromatography (HPLC) multifunctional immobilized chiral stationary phase was prepared by bonding dialdehyde microcrystalline cellulose to aminosilica via Schiff base reaction and then derivatized with 3,5‐dimethylphenyl isocyanate. The HPLC multifunctional immobilized chiral stationary phase could not only achieve chiral separation but also achieve achiral separation. Chiral separation evaluation showed that 1‐(1‐naphthyl)ethanol and mandelonitrile got separation in normal phase (NP) mode. Ranolazine, benzoin ethyl ether, metalaxyl, and diclofop were successfully separated in reversed phase (RP) mode. Aromatic compounds such as polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids were selected as analytes to investigate the achiral separation performance of the multifunctional immobilized chiral stationary phase in NP and RP modes. The achiral separation evaluation showed that six PAHs could get good separation within 10 minutes in NP mode. Four aromatic acids were well separated in RP mode. The retention mechanism of aromatic compounds on the stationary phase was discussed, founding that π‐π interaction, π‐π electron‐donor‐acceptor (EDA) interaction, and hydrogen bonding interaction played important roles during the achiral separation process. This multifunctional immobilized chiral stationary phase had the advantages of simple bonding steps, short reaction time, and no need for space arm.  相似文献   

13.
Jin JY  Lee W 《Chirality》2007,19(2):120-123
The liquid chromatographic separation of the enantiomers of several N-hydrazide derivatives of 2-aryloxypropionic acids was performed on a crown ether type chiral stationary phase derived from (18-crown-6)-2,3,11,12-tetracarboxylic acid. The behavior of chromatographic parameters by the change of mobile phases and additives for the resolution of these analytes was investigated. The enantiomers of all analytes were base-line resolved with a mobile phase of 100% methanol containing 20 mM H2SO4. These results are the first reported for enantiomer resolution of chiral acids of 2-aryloxypropionic acids as their N-hydrazide derivatives.  相似文献   

14.
Recently, we reported the development of new chiral stationary phases (CSPs) for liquid chromatography (LC) based on chiral derivatives of xanthones (CDXs). Based on the most promising CDX selectors, 12 new CSPs were successfully prepared starting from suitable functionalized small molecules including xanthone and benzophenone derivatives. The chiral selectors comprising one, two, three, or four chiral moieties were covalently bonded to a chromatographic support and further packed into LC stainless-steel columns (150 × 2.1 mm I.D.). The enantioselective performance of the new CSPs was evaluated by LC using different classes of chiral compounds. Specificity for enantioseparation of some CDXs was observed in the evaluation of the new CSPs. Besides, assessment of chiral recognition mechanisms was performed by computational studies using molecular docking approach, which are in accordance with the chromatographic parameters. X-Ray analysis was used to establish a chiral selector 3D structure.  相似文献   

15.
The direct HPLC enantioseparation of Mianserin and a series of aptazepine derivatives is accomplished on polysaccharide-based chiral stationary phases (CSPs). The resolutions are performed on the coated-type Chiralcel OD and Chiralpak AD CSPs and on the first commercially available immobilized-type Chiralpak IA CSP, in normal-phase and polar-organic modes. The complete separation of enantiomers of all racemates investigated was successfully achieved under at least one of CSP/eluent combinations employed. Pure alcohols such ethanol or 2-propanol, with a fixed percentage of DEA added, serve as valuable alternatives to the more common n-hexane-based normal-phase eluents in resolution of Mianserin on the AD CSP. In order to study the chiroptical properties of aptazepine derivatives, chromatographic resolutions are carried out at semipreparative scale using Chiralpak AD and Chiralpak IA as CSPs. Nonconventional dichloromethane-based eluents have permitted to expand the chiral resolving ability of the immobilized Chiralpak IA CSP and to perform mg-scale enantioseparations with an analytical-size column. Assignment of the absolute configuration of the separated enantiomers is empirically established by comparing their chiroptical data with those of structurally related Mianserin.  相似文献   

16.
Wang P  Liu D  Jiang S  Gu X  Zhou Z 《Chirality》2007,19(2):114-119
Amylopectin-tris(phenylcarbamate) was synthesized and coated to aminopropylsilica to prepare chiral stationary phase. The chiral separations of fungicide enantiomers were performed by the CSP using high-performance liquid chromatography. Mobile phase was n-hexane and isopropanol, and flow rate was 1.0 ml/min. Detection wavelength was 230 nm. The influence of the percentage of isopropanol in the mobile phase on the separations was studied. Twelve chiral fungicides were tested and seven of them were found to show stereoselectivity on the CSP. The enantiomers of metalaxyl and benalaxyl got near baseline separations and myclobutanil, hexconazole, tebuconazole, uniconazole, and paclobutrazol enantiomers were completely separated. The decreasing percentage of isopropanol in the mobile phase resulted in better separation and longer analysis time. The enantiomers were identified by a circular dichroism (CD) detector and the CD spectra of the individual enantiomers were also studied by online scanning.  相似文献   

17.
Tan X  Hou S  Wang M 《Chirality》2007,19(7):574-580
A novel chiral packing material for high-performance liquid chromatography (HPLC) was prepared by connecting (R)-1-phenyl-2-(4-methylphenyl) ethylamine (PTE) amide derivative of (S)-isoleucine to aminopropyl silica gel through 2-amino-3,5-dinitro-1-carboxamido-benzene unit. This chiral stationary phase was applied to the enantioselective and diastereoselective separation of five pyrethroid insecticides by HPLC under normal phase condition. To achieve satisfactory baseline separation an optimization of the variables of mobile phase composition was required. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-1,2-dichloroethane-2-propanol as mobile phase. The results show that the enantioselectivity of CSP is better than Pirkle type 1-A column for these compounds. Only partial separations for the cypermethrin and cyfluthrin stereoisomers were observed. Seven peaks and eight peaks were observed for cypermethrin and cyfluthrin, respectively. The elution orders were assigned by using different stereoisomer-enriched products.  相似文献   

18.
Dai Z  Ye G  Pittman CU  Li T 《Chirality》2012,24(4):329-338
A protocol was developed for the solution-phase synthesis of multigram amounts of two 9-fluorenylmethoxycarbonyl (Fmoc)-protected tetraproline peptides. These tetraproline peptides were then attached to amino derivatized silica gel. The replacement of the Fmoc group with the trimethylacetyl group lead to two tetraproline chiral stationary phases (CSPs). A comparison of the chromatographic behavior of these two solution-phase-synthesized tetraproline CSPs with that prepared by stepwise solid-phase synthesis revealed that all three had similar chromatographic performance for resolving 53 model analytes. This suggests that the solution-phase synthesis of oligoprolines, which allows for the specific benefits of good batch reproducibility, selector homogeneity, and possibly low cost, is a feasible alternative to the solid-phase synthesis of oligoproline CSPs.  相似文献   

19.
New dichloro-, dimethyl-, and chloromethylphenylcarbamate derivatives of cyclodextrins (CDs) were prepared and their enantiomeric recognition abilities were evaluated as chiral stationary phases (CSPs) in normal phase high-performance liquid chromatography (HPLC). The effects of the type of cyclodextrins, the nature and position of the substituents on the phenyl ring, binding mode and spacer on the chiral recognition were studied in detail. No marked change of chiral recognition abilities was established by reversing the binding side of CDs (i.e., by the narrower [primary] opening of the cone-shaped CD to silica gel with the wider [secondary] opening sides). This result indirectly proves the previously drawn conclusion about the minor role of inclusion phenomena in chiral recognition in this case. Nevertheless, chiral recognition of these CSPs toward some compounds critically depends on the type of CDs used. All CD derivatives described in this study show rather low enantiomeric resolving abilities compared with corresponding polysaccharide (cellulose and amylose) derivatives, although very high enantioselectivity of separation was observed for a few compounds, such as racemic flavanone and cyclopropanedicarboxilic acid dianilide. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Three fungicidal triazolyl alcohols (triadimenol, hexaconazole, and cis/trans‐1‐4‐chlorophenyl‐2‐1H‐1,2,4‐triazol‐1‐yl‐cycloheptanol) were completely separated into enantiomers by chiral HPLC using polysaccharide‐based chiral stationary phases. A better separation was achieved on cellulose and amylose carbamate phases compared with a cellulose ester phase. Peak shapes were almost symmetrical except for two cases, where tailing of the first eluted enantiomer and unusual symmetric peak broadening were observed. The effect of eluents on enantioseparation was also investigated. Chirality 11:195–200, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号