首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports the electrical responses of a phosphate ionophore, the cyclic polyamine 3-decyl-1,5,8-triazacyclodecane-2,4-dione (N3-cyclic amine) incorporated into metal supported bilayer lipid membranes (s-BLM). Teflon coated silver wire was used as a support. In a potentiometric mode, the ionophore had a response that was linearly related to the logarithm of HPO42− concentration and was also dependant on pH. Selectivity coefficients for other anions compared to HPO42− ions, determined by the separate solution method, fell within the range 1.73 × 10−4 to 6.38 × 10−2.  相似文献   

2.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the V value of the phosphate uptake was decreased, whereas the apparent Km for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions.  相似文献   

3.
Microbial mineralization of organic phosphate in soil   总被引:35,自引:0,他引:35  
Summary Phosphate-dissolving microorganisms were isolated from non-rhizosphere and rhizosphere of plants. These isolates included bacteria, fungi and actinomycetes. In broth cultures, Gram-negative short rod,Bacillus andStreptomyces species were found to be more active in solubilizing phosphate thanAspergillus, Penicillium, Proteus, Serratia, Pseudomonas andMicrococcus spp. The sterile soils mixed with isolated pure culture showed slower mineralization of organic phosphate than that of non-sterile soil samples at all incubation periods. Maximum amount of phosphate mineralization by isolated microorganisms were obtained at the 60th and the 75th day of incubation in sterile and non-sterile soils respectively. The mixed cultures were most effective in mineralizing organic phosphate and individuallyBacillus sp. could be ranked next to mixed cultures. Species ofPseudomonas andMicrococcus were almost the same as that of the control under both sterile and non-sterile conditions.  相似文献   

4.
两株解磷真菌的解磷能力及其解磷机理的初步研究   总被引:12,自引:1,他引:12  
从不同处理的水稻土壤中分离筛选出两株高效解磷真菌HP2、P5,研究了不同碳源条件对溶磷效果的影响,以及解磷菌株在不同的碳源培养条件下,溶磷量与培养介质pH值之间的相关性。结果表明,HP2菌株解磷能力在不同的测定时间内均高于P5菌株;不同碳源培养基的溶磷量顺序为蔗糖〉葡萄糖〉纤维素,且彼此差异显著:测定时间内,菌株的溶磷量与介质pH值之间存在极显著相关性(P〈0.01)。  相似文献   

5.
BackgroundThe use of microbes that improve plant phosphorus (P) use efficiency is an avenue to boost crop yields while alleviating environmental impacts. We tested three microbial inoculants (Rhizoglomus irregulare alone – designated AMF; Pseudomonas putida alone – designated PSB; and R. irregulare and P. putida in consortium – designated AMF+PSB), combined with chemical fertilizers, in an intensive maize agricultural system.ResultsAs hypothesized: (i) despite the native soil microbial community and the application of P fertilizer, the microbial inoculants enhanced plant P uptake from the soil by 14–60%, and consequently improved P acquisition efficiency; (ii) PSB and AMF+PSB plants produced ±50% more biomass per unit of P taken up, and consequently enhanced plant internal P use efficiency (i.e. the biomass produced per unit of P); and (iii) the combined inoculation of AMF and PSB provided the best results in terms of productivity and P use efficiency. Further, the microbial inoculants altered P allocation within the plant, reducing grain P concentration.ConclusionBy testing the microbial inoculants under field conditions, our study clearly shows that the microbial consortium (AMF+PSB) increased maize productivity, and at the same time improved P use efficiency. Further, the use of these microbial inoculants was shown to be compatible with conventional agricultural management practices.  相似文献   

6.
Thiobacillus ferroxidans ATCC 19859 undergoes rapid phenotypic switching between a wild-type state characterized by the ability to oxidize ferrous iron (FeII) and reduced sulfur compounds and a mutant state where it has lost the capacity to oxidize FeII but retains the ability to oxidize sulfur. The mutant has also gained the capacity to swarm. It is proposed that loss of FeII oxidation is due to the reversible transposition of the insertion sequence IST1 into resB encoding a putative cytochrome c-type biogenesis protein. Downstream from resB and co-transcribed with it is resC, encoding another putative cytochrome biogenesis protein. IST1 insertional inactivation of resB could result in the loss of activity of its target c-type cytochrome(s). This putative target cytochrome(s) is proposed to be essential for FeII oxidation but not for sulfur oxidation. Curiously, resB and resC pertain to the proposed system II cytochrome biogenesis pathway whereas gamma Proteobacteria, of which T. ferrooxidans is a member, normally use system I. This could represent an example of lateral gene transfer.  相似文献   

7.
Phosphate solubilizing bacteria NBRI0603, NBRI2601, NBRI3246 and NBRI4003 were isolated from the rhizosphere of chickpea and alkaline soils. All four strains demonstrated diverse levels of phosphate solubilization activity under in vitro conditions in the presence of various carbon and nitrogen sources. Acid production may have contributed to phosphate solubilization, but was not the only reason for phosphate release into the medium. Among the four strains, NBRI2601 was the most efficient strain in terms of its capability to solubilize phosphorus in the presence of 10% salt, pH 12, or 45 degrees C. The strains showed varied levels of phosphate solubilization when the effects of different sources of nitrogen were examined during growth. The presence of low levels of Ca(2+) and EDTA in the medium enhanced phosphate solubilization.  相似文献   

8.
A total of 23 phosphate solubilizing bacteria (PSB) and 35 phosphate solubilizing fungi (PSF) were isolated from 19 samples of salt affected soils. The ability of 12 selected PSB and PSF to grow and solubilize tricalcium phosphate in the presence of different concentrations of NaCl was examined. Among 12 PSB, Aerococcus sp. strain PSBCRG1-1 recorded the highest (12.15) log viable cell count at 0.4 M NaCl concentration after 7 days after incubation (DAI) and the lowest log cell count (1.39) was recorded by Pseudomonas aeruginosa strain PSBI3-1 at 2.0 M NaCl concentration after 24 h of incubation. Highest mycelial dry weight irrespective of NaCl concentrations was recorded by the Aspergillus terreus strain PSFCRG2-1 (0.567 g). The percent Pi release, in general, was found to increase with increase in NaCl concentration up to 0.8 M for bacterial solubilization and declined thereafter. At 15 DAI, strain Aerococcus sp. strain PSBCRG1-1 irrespective of NaCl concentrations showed the maximum P-solubilization (12.12%) which was significantly superior over all other isolates. The amount of Pi released in general among PSF was found to decrease with increase in NaCl concentration at all the incubation periods. Aspergillus sp. strain PSFNRH-2 (20.81%) recorded the maximum Pi release irrespective of the NaCl concentrations and was significantly superior over all other PSF at 7 DAI.  相似文献   

9.
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.  相似文献   

10.
The conditions necessary for the establishment and maintenance of Enhanced Biological Phosphate Removal (EBPR) from wastewaters are discussed in the light of our inability to achieve levels of EBPR from artificial sewage in a laboratory‐scale system. Adequate levels of P removal and polyP accumulation by sludge biomass could only be restored by the imposition of stringent anaerobiosis (Eh < –120 mV) and by increasing the short chain fatty acid composition of the influent. Subsequent laboratory‐scale investigations into several possible alternative strategies to achieve enhanced levels of P removal and polyP accumulation from artificial sewage medium indicated that a reduction in the operational pH of the system to approximately 5.5 could achieve comparable levels of P removal under fully‐aerobic conditions. Acid stimulated P uptake and polyP formation might serve as the basis of novel alternative technologies for eutrophication control at wastewater treatment facilities.  相似文献   

11.
12.
A series of phosphonate analogues of the antiviral cyclopropane nucleoside A-5021 were synthesized from (1S*, 7R*)-3,5-dioxa-4,4-diphenylbicyclo[5.1.0]octane-l-methanol by a 10-step process. In contrast to the potent antiherpetic activity of A-5021, they were all devoid of antiviral activity.  相似文献   

13.
Mineralogy, microbial ecology, and mineral weathering in the subsurface are an intimately linked biogeochemical system. Although bacteria have been implicated indirectly in the accelerated weathering of minerals, it is not clear if this interaction is simply the coincidental result of microbial metabolism, or if it represents a specific strategy offering the colonizing bacteria a competitive ecological advantage. Our studies provide evidence that silicate weathering by bacteria is sometimes driven by the nutrient requirements of the microbial consortium, and therefore depends on the trace nutrient content of each aquifer mineral. This occurrence was observed in reducing groundwaters where carbon is abundant but phosphate is scarce; here, even resistant feldspars are weathered rapidly. This suggests that the progression of mineral weathering may be influenced by a mineral's nutritional potential, with microorganisms destroying only beneficial minerals. The rock record, therefore, may contain a remnant mineralogy that reflects early microbial destruction of biologically valuable minerals, leaving a residuum of "useless" minerals, where "value" depends on the organism, its metabolic needs, and the diagenetic environment. Conversely, the subsurface distribution of microorganisms may, in part, be controlled by the mineralogy and by the ability of an organism to take advantage of mineral-bound nutrients.  相似文献   

14.
Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni2+ on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni2+ at concentrations ranging between 66.4–99.36%, 56.19–99.88% and 45.98–85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni2+ at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni2+ but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N2+/L followed by an inhibition of nutrient removal at Ni2+ concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (= 0.806/0.799, < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni2+/L, an increase in Ni2+ concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni2+ appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni2+/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni2+ and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems.  相似文献   

15.
Summary Dihydrogen phosphate ion activity (H2PO4) and phosphate potential were measured in the saturation extracts of 14 representative Red Mediterranean soils (Alfisols) of Greece, estimating the ionic strength from a) measured ionic concentrations b) actual ionic concentrations and c) electrical conductivity measurements. The values of (H2PO4) and phosphate potential thus obtained were correlated with P-uptake by rye-grass in a pot experiment. The correlation coefficients did not differ significantly (p≤0.001) from one another and from those of (H2PO4) and phosphate potential measured in 0.01M CaCl2 extracts.  相似文献   

16.
Plasmid pTO1 containing the oriT fragment from RK2, the Escherichia coli replication function from pBR322, and a DNA fragment of actinophage φC31 with the attachment site was transferred from E. coli S17-1 to strains of the genera Actinomadura, Arthrobacter, Micromonospora, Nocardia, Rhodococcus, and to 16 strains of the genus Streptomyces. The frequency of conjugant formation was 1×10−3–1×10−5 depending on the strain. Hybridization experiments demonstrated that plasmid pTO1 integrates into chromosomes of a number of the recipient strains examined.  相似文献   

17.
Abstract We examined phosphate (Pi) uptake by two well-characterized microorganisms: a green alga ( Selenastrum capricornutum ) and a heterotrophic yeast ( Rhodotorula rubra ). Phosphate uptake was measured in dual- and single-species continuous cultures after perturbation of a phosphorus (P)-limited steady-state culture by additions of varying concentrations of Pi. We found that, under these conditions, both organisms had very high transport rates for Pi. The yeast was able to attain higher internal P concentrations than predicted from either steady-state or from P-starved batch culture data. Because the yeast was able to sequester and store Pi more efficiently than the alga under dilute Pi continuous culture conditions, co-existence of the two organisms was ultimately controlled by the concentration of carbon available for growth of the yeast.  相似文献   

18.
The effects of phenylisothiocyanate (PITC) and of the polar analogue p-sulfophenylisothiocyanate (p-sulfoPITC) on the phosphate carrier of bovine heart mitochondria have been investigated. Incubation of mitochondria with the two phenylisothiocyanates leads to inhibition of the phosphate carrier protein. The inhibition of phosphate transport by PITC is unaffected by the addition of dithioerythritol (DTE) or by variation of the pH. The inhibition by p-sulfoPITC is in part removed by DTE; the remaining inactivation of the phosphate carrier, which can be attributed to the reaction with NH2 groups, is temperature and pH-dependent. Inhibition of phosphate transport by both p-sulfoPITC and PITC depends on the time of incubation and the concentration of the inhibitor. Preincubation with mersalyl protects the carrier protein against the inactivation by p-sulfoPITC but not against PITC. Other SH reagents tested do not show any protective effect. It can thus be concluded that two types of lysine residues are essential for the activity of the phosphate carrier. Lysine(s) of the former type are located at the surface of the membrane and are topologically related to the functional SH groups of the protein. Lysine residue(s) of the latter type are buried in the hydrophobic phase of the membrane.  相似文献   

19.
The interaction of the antitumoural metallocene dihalides, titanocene dichloride (Cp2TiCl2) and Titanocene Y (bis-[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) chloride), with bis(4-nitrophenyl) phosphate (BNPP), which is a widely used model for the phosphate diester linkages in DNA, has been studied. Cp2TiCl2 has been shown to promote the cleavage of the phosphate diester in weakly acidic solution. At pH 4, 37 °C, a 106-fold rate acceleration over the uncatalysed reaction was observed under pseudo-first-order conditions, when freshly prepared solutions of Cp2TiCl2 were applied. The activity of aged solutions dropped significantly due to the formation of insoluble precipitates of hydrolysed Ti species. The precipitates isolated from aged solutions were shown to act as moderately active, heterogeneous catalysts for BNPP cleavage. By contrast, no hydrolysis of the phosphate diester could be observed in the presence of Titanocene Y. Implications for the mode of action of the apoptosis-inducing metallocene dihalides are discussed.  相似文献   

20.
含ColV质粒的大肠杆菌在含有磷酸盐的牛肉膏蛋白胨培养基上形成的菌落,当覆盖敏感菌后可以形成较大的抑菌圈。说明磷酸盐对ColV质粒所编码的V族大肠杆菌素的形成有促进作用。在培养基中加入二价离子螯合剂——EDTA对大肠杆菌素形成同样有促进作用,而增加二价阳离子Ca++或Mg++却起到相反的作用。磷酸盐的这种促进作用是由于它降低了牛肉膏蛋白胨培养基中二价阳离子的浓度而引起的。因此,在培养基中添加磷酸盐有助于分离ColV质粒含有菌和对V族大肠杆菌素的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号