首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca2+-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4–S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca2+ of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4–S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.  相似文献   

2.
Mutations in PKD2 gene result in autosomal dominant polycystic kidney disease (ADPKD). PKD2 encodes polycystin-2 (TRPP2), which is a homologue of transient receptor potential (TRP) cation channel proteins. Here we identify a novel PKD2 mutation that generates a C-terminal tail-truncated TRPP2 mutant 697fsX with a frameshift resulting in an aberrant 17-amino acid addition after glutamic acid residue 697 from a family showing mild ADPKD symptoms. When recombinantly expressed in HEK293 cells, wild-type (WT) TRPP2 localized at the endoplasmic reticulum (ER) membrane significantly enhanced Ca2+ release from the ER upon muscarinic acetylcholine receptor (mAChR) stimulation. In contrast, 697fsX, which showed a predominant plasma membrane localization characteristic of TRPP2 mutants with C terminus deletion, prominently increased mAChR-activated Ca2+ influx in cells expressing TRPC3 or TRPC7. Coimmunoprecipitation, pulldown assay, and cross-linking experiments revealed a physical association between 697fsX and TRPC3 or TRPC7. 697fsX but not WT TRPP2 elicited a depolarizing shift of reversal potentials and an enhancement of single-channel conductance indicative of altered ion-permeating pore properties of mAChR-activated currents. Importantly, in kidney epithelial LLC-PK1 cells the recombinant 679fsX construct was codistributed with native TRPC3 proteins at the apical membrane area, but the WT construct was distributed in the basolateral membrane and adjacent intracellular areas. Our results suggest that heteromeric cation channels comprised of the TRPP2 mutant and the TRPC3 or TRPC7 protein induce enhanced receptor-activated Ca2+ influx that may lead to dysregulated cell growth in ADPKD.  相似文献   

3.
Cheng KT  Liu X  Ong HL  Swaim W  Ambudkar IS 《PLoS biology》2011,9(3):e1001025
Store-operated Ca2+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca2+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent ISOC, activated in response to Ca2+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated ICRAC; the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(684EE685). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca2+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd3+, removal of extracellular Ca2+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca2+-containing, but not Ca2+-free, medium. Consistent with this, ICRAC is activated in cells pretreated with thapsigargin in Ca2+-free medium while ISOC is activated in cells pretreated in Ca2+-containing medium. Significantly, TRPC1 function is required for sustained KCa activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca2+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca2+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.  相似文献   

4.
Transient receptor potential canonical type 3 (TRPC3) channels are non-selective cation channels and regulate intracellular Ca2+ concentration. We examined the role of TRPC3 channels in agonist-, membrane depolarization (high K+)-, and mechanical (pressure)-induced vasoconstriction and vasorelaxation in mouse mesenteric arteries. Vasoconstriction and vasorelaxation of endothelial cells intact mesenteric arteries were measured in TRPC3 wild-type (WT) and knockout (KO) mice. Calcium concentration ([Ca2+]) was measured in isolated arteries from TRPC3 WT and KO mice as well as in the mouse endothelial cell line bEnd.3. Nitric oxide (NO) production and nitrate/nitrite concentrations were also measured in TRPC3 WT and KO mice. Phenylephrine-induced vasoconstriction was reduced in TRPC3 KO mice when compared to that of WT mice, but neither high K+- nor pressure-induced vasoconstriction was altered in TRPC3 KO mice. Acetylcholine-induced vasorelaxation was inhibited in TRPC3 KO mice and by the selective TRPC3 blocker pyrazole-3. Acetylcholine blocked the phenylephrine-induced increase in Ca2+ ratio and then relaxation in TRPC3 WT mice but had little effect on those outcomes in KO mice. Acetylcholine evoked a Ca2+ increase in endothelial cells, which was inhibited by pyrazole-3. Acetylcholine induced increased NO release in TRPC3 WT mice, but not in KO mice. Acetylcholine also increased the nitrate/nitrite concentration in TRPC3 WT mice, but not in KO mice. The present study directly demonstrated that the TRPC3 channel is involved in agonist-induced vasoconstriction and plays important role in NO-mediated vasorelaxation of intact mesenteric arteries.  相似文献   

5.
The canonical transient receptor potential 6 gene, TRPC6, has been implicated as a putative risk gene for chemotherapy-induced congestive heart failure, but knowledge of specific risk variants is lacking. Following our genome-wide association study and subsequent fine-mapping, a rare missense mutant of TRPC6 N338S, was identified in a breast cancer patient who received anthracycline-containing chemotherapy regiments and developed congestive heart failure. However, the function of N338S mutant has not been examined. Using intracellular Ca2+ imaging, patch clamp recording and molecular docking techniques, we assessed the function of N338S mutant heterologously expressed in HEK293 cells and HL-1 cardiac cells. We found that expression of TRPC6 N338S significantly increased intracellular Ca2+ levels ([Ca2+]i) and current densities in response to 50 μM 1-oleoyl 2-acetyl-sn-glycerol (OAG), an activator of TRPC6 channels, compared to those of TRPC6 WT. A 24-h pretreatment with 0.5 μM doxorubicin (DOX) further potentiated the OAG effects on TRPC6 N338S current densities and [Ca2+]i, and these effects were abolished by 1 μM BI-749327, a highly selective TRPC6 inhibitor. Moreover, DOX treatment significantly upregulated the mRNA and protein expressions of TRPC6 N338S, compared to those of TRPC6 WT. Molecular docking and dynamics simulation showed that OAG binds to the pocket constituted by the pore-helix, S5 and S6 domains of TRPC6. However, the N338S mutation strengthened the interaction with OAG, therefore stabilizing the OAG-TRPC6 N338S complex and enhancing OAG binding affinity. Our results indicate that TRPC6 N338S is a gain-of-function mutant that may contribute to DOX-induced cardiotoxicity by increasing Ca2+ influx and [Ca2+]i in cardiomyocytes.  相似文献   

6.
Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.  相似文献   

7.
Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca2+ influx. TRPCs are gated open by the endoplasmic reticulum Ca2+ sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca2+ influx, and inhibition of Trpc3 had no further effect on Ca2+ influx in Trpc1−/− cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel gating.  相似文献   

8.
Coordination of lipids within transient receptor potential canonical channels (TRPCs) is essential for their Ca2+ signaling function. Single particle cryo‐EM studies identified two lipid interaction sites, designated L1 and L2, which are proposed to accommodate diacylglycerols (DAGs). To explore the role of L1 and L2 in TRPC3 function, we combined structure‐guided mutagenesis and electrophysiological recording with molecular dynamics (MD) simulations. MD simulations indicate rapid DAG accumulation within both L1 and L2 upon its availability within the plasma membrane. Electrophysiological experiments using a photoswitchable DAG‐probe reveal potentiation of TRPC3 currents during repetitive activation by DAG. Importantly, initial DAG exposure generates a subsequently sensitized channel state that is associated with significantly faster activation kinetics. TRPC3 sensitization is specifically promoted by mutations within L2, with G652A exhibiting sensitization at very low levels of active DAG. We demonstrate the ability of TRPC3 to adopt a closed state conformation that features partial lipidation of L2 sites by DAG and enables fast activation of the channel by the phospholipase C‐DAG pathway.  相似文献   

9.
TRPC3, 6 and 7 channels constitute a subgroup of non-selective, calcium-permeable cation channels within the TRP superfamily that are activated by products of phospholipase C-mediated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP(2)). A number of ion channels, including other members of the TRP superfamily, are regulated directly by PIP(2). However, there is little information on the regulation of the TRPC channel subfamily by PIP(2). Pretreatment of TRPC7-expressing cells with a drug that blocks the synthesis of polyphosphoinositides inhibited the ability of the synthetic diacylglycerol, oleyl-acetyl glycerol, to activate TRPC7. In excised patches, TRPC7 channels were robustly activated by application of PIP(2) or ATP, but not by inositol 1,4,5-trisphosphate. Similar results were obtained with TRPC6 and TRPC3, although the effects of PIP(2) were somewhat less and with TRPC3 there was no significant effect of ATP. In the cell-attached configuration, TRPC7 channels could be activated by the synthetic diacylglycerol analog, oleyl-acetyl glycerol. However, this lipid mediator did not activate TRPC7 channels in excised patches. In addition, channel activation by PIP(2) in excised patches was significantly greater than that observed with oleyl-acetyl glycerol in the cell-attached configuration. These findings reveal complex regulation of TRPC channels by lipid mediators. The results also reveal for the first time direct activation by PIP(2) of members of the TRPC ion channel subfamily.  相似文献   

10.
Type 1 ryanodine receptors (RyR1s) release Ca2+ from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca2+ release response in HEK293 cells and bound the RyR-specific ligand [3H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K+ conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca2+ release in HEK293 cells, low [3H]ryanodine binding levels, and channels that were not regulated by Ca2+ and did not conduct Ca2+ in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.  相似文献   

11.
Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca2+ via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca2+ and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca2+-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca2+. These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca2+-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca2+ affinity than WT CaM.  相似文献   

12.
The canonical transient receptor potential (TRPC) channels are Ca2+-permeable cationic channels controlling the Ca2+ influx evoked by G protein-coupled receptor activation and/or by Ca2+ store depletion. Here we investigate the involvement of TRPCs in the cell differentiation of lung cancer. The expression of TRPCs and the correlation to cancer differentiation grade in non-small cell lung cancer (NSCLC) were analyzed by real-time PCR and immunostaining using tissue microarrays from 28 patient lung cancer samples. The association of TRPCs with cell differentiation was also investigated in the lung cancer cell line A549 by PCR and Western blotting. The channel activity was monitored by Ca2+ imaging and patch recording after treatment with all-trans-retinoic acid (ATRA). The expression of TRPC1, 3, 4 and 6 was correlated to the differentiation grade of NSCLC in patients, but there was no correlation to age, sex, smoking history and lung cancer cell type. ATRA upregulated TRPC3, TRPC4 and TRPC6 expression and enhanced Ca2+ influx in A549 cells, however, ATRA showed no direct effect on TRPC channels. Inhibition of TRPC channels by pore-blocking antibodies decreased the cell mitosis, which was counteracted by chronic treatment with ATRA. Blockade of TRPC channels inhibited A549 cell proliferation, while overexpression of TRPCs increased the proliferation. We conclude that TRPC expression correlates to lung cancer differentiation. TRPCs mediate the pharmacological effect of ATRA and play important roles in regulating lung cancer cell differentiation and proliferation, which gives a new understanding of lung cancer biology and potential anti-cancer therapy.  相似文献   

13.
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.  相似文献   

14.
IgE-antigen-dependent crosslinking of the high affinity IgE receptor (FcεRI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca2+) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls FcεRI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed FcεRI-dependent Ca2+ mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn −/− knock out mice. Fyn −/− BMMCs showed a marked defect in extracellular Ca2+ influx after FcεRI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd3+) partially blocked FcεRI-induced Ca2+ influx in WT cells but, in contrast, completely inhibited Ca2+ mobilization in Fyn −/− cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca2+ channels (2-aminoethoxyphenyl-borane, 2-APB) blocked FcεRI-induced maximal Ca2+ rise in WT but not in Fyn −/− cells. Ca2+ entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in FcεRI-stimulated mast cells.  相似文献   

15.
TRPC3 (or Htrp3) is a human member of the trp family of Ca2+-permeable cation channels. Since expression of TRPC3 cDNA results in markedly enhanced Ca2+ influx in response to stimulation of membrane receptors linked to phospholipase C (Zhu, X., J. Meisheng, M. Peyton, G. Bouley, R. Hurst, E. Stefani, and L. Birnbaumer. 1996. Cell. 85:661–671), we tested whether TRPC3 might represent a Ca2+ entry pathway activated as a consequence of depletion of intracellular calcium stores. CHO cells expressing TRPC3 after intranuclear injection of cDNA coding for TRPC3 were identified by fluorescence from green fluorescent protein. Expression of TRPC3 produced cation currents with little selectivity for Ca2+ over Na+. These currents were constitutively active, not enhanced by depletion of calcium stores with inositol-1,4,5-trisphosphate or thapsigargin, and attenuated by strong intracellular Ca2+ buffering. Ionomycin led to profound increases of currents, but this effect was strictly dependent on the presence of extracellular Ca2+. Likewise, infusion of Ca2+ into cell through the patch pipette increased TRPC3 currents. Therefore, TRPC3 is stimulated by a Ca2+-dependent mechanism. Studies on TRPC3 in inside-out patches showed cation-selective channels with 60-pS conductance and short (<2 ms) mean open times. Application of ionomycin to cells increased channel activity in cell-attached patches. Increasing the Ca2+ concentration on the cytosolic side of inside-out patches (from 0 to 1 and 30 μM), however, failed to stimulate channel activity, even in the presence of calmodulin (0.2 μM). We conclude that TRPC3 codes for a Ca2+-permeable channel that supports Ca2+-induced Ca2+-entry but should not be considered store operated.  相似文献   

16.
Photouncaging of second messengers has been successfully employed to gain mechanistic insight of cellular signaling pathways. One of the most enigmatic processes of ion channel regulation is lipid recognition and lipid-gating of TRPC channels, which represents pivotal mechanisms of cellular Ca~(2+) homeostasis. Recently, optopharmacological tools including caged lipid mediators became available, enabling an unprecedented level of temporal and spatial control of the activating lipid species within a cellular environment. Here we tested a commonly used caged ligand approach for suitability to investigate TRPC signaling at the level of membrane conductance and cellular Ca~(2+) handling. We report a specific photouncaging artifact that is triggered by the cage structure coumarin at UV illumination. Electrophysiological characterization identified a light-dependent membrane effect of coumarin. UV light(340 nm) as used for photouncaging, initiated a membrane conductance specifically in the presence of coumarin as low as 30 μmol L~(-1) concentrations. This conductance masked the TRPC3 conductance evoked by photouncaging, while TRPC-mediated cellular Ca~(2+) responses were largely preserved. The observed light-induced membrane effects of the released caging moiety may well interfere with certain cellular functions, and prompt caution in using coumarin-caged second messengers in cellular studies.  相似文献   

17.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca2+-permeable channels. TRPC channels are activated by stimulation of Gαq-PLC-coupled receptors. Here, we report that TRPC4/TRPC5 can be activated by Gαi. We studied the essential role of Gαi subunits in TRPC4 activation and investigated changes in ion selectivity and pore dilation of the TRPC4 channel elicited by the Gαi2 subunit. Activation of TRPC4 by Gαi2 increased Ca2+ permeability and Ca2+ influx through TRPC4 channels. Co-expression of the muscarinic receptor (M2) and TRPC4 in HEK293 cells induced TRPC4-mediated Ca2+ influx. Moreover, both TRPC4β and the TRPC4β-Gαi2 signaling complex induced inhibition of neurite growth and arborization in cultured hippocampal neurons. Cells treated with KN-93, a CaMKII inhibitor, prevented TRPC4- and TRPC4-Gαi2Q205L-mediated inhibition of neurite branching and growth. These findings indicate an essential role of Gαi proteins in TRPC4 activation and extend our knowledge of the functional role of TRPC4 in hippocampal neurons.  相似文献   

18.
The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca2+-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca2+-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Gαi/o antibodies. However, there is still no report which Gα proteins are involved in the activation process of TRPC4. Among Gα proteins, only Gαi protein can activate TRPC4 channel. The activation effect of Gαi was specific for TRPC4 because Gαi has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Gαi is involved specifically in the activation of TRPC4.  相似文献   

19.
The objective of this work was to identify and further characterize potential changes in the functional profile of the cardiac ryanodine receptor (RyR2) channel caused by the coupled gating phenomenon. By reconstituting an ion channel into a planar lipid membrane, we showed that coupled RyR2 channels were activated by cytosolic Ca2+ with similar efficacy and potency as reported for the single RyR2 channel. In contrast, all examined parameters of gating kinetics were affected by the functional interaction between channels. Ignoring brief closings during main open events, the average open and closed times were considerably prolonged and the frequency of opening was reduced. Interestingly, when luminal Ca2+ was used as a charge carrier, Ca2+-activated coupled RyR2 channels did not exhibit a sudden switch from slow to fast gating kinetics at an open probability of 0.5 as reported for the single RyR2 channel. Regarding flicker gating, the average closed time was significantly shorter and the frequency of closing was greatly enhanced. Furthermore, in contrast to the single RyR2 channel, both parameters for coupled channels were independent of cytosolic Ca2+. Selected permeation properties of coupled RyR2 channels were comparable to those found for the single RyR2 channel. The Ca2+ current amplitude-luminal Ca2+ relationship displayed a simple saturation and the channel selectivity for Ba2+ and Ca2+ ions was similar. Our results suggest that the major targets influenced by coupled gating are likely the gates of individual RyR2 channels recruited into a functional complex, thus ensuring the correlation of Ca2+ fluxes.  相似文献   

20.
Voltage‐gated Kv7.2 potassium channels regulate neuronal excitability. The gating of these channels is tightly controlled by various mediators and neurotransmitters acting via G protein‐coupled receptors; the underlying signaling cascades involve phosphatidylinositol‐4,5‐bisphosphate (PIP2), Ca2+/calmodulin, and phosphorylation. Recent studies found that the PIP2 sensitivity of Kv7.2 channels is affected by two posttranslational modifications, phosphorylation and methylation, harboured within putative PIP2‐binding domains. In this study, we updated phosphorylation and methylation sites in Kv7.2 either heterologously expressed in mammalian cells or as GST‐fusion proteins exposed to recombinant protein kinases by using LC–MS/MS. In vitro kinase assays revealed that CDK5, protein kinase C (PKC) alpha, PKA, p38 MAPK, CamKIIα, and GSK3β could mediate phosphorylation. Taken together, we provided a comprehensive map of phosphorylation and methylation in Kv7.2 within protein–protein and protein–lipid interaction domains. This may help to interpret the functional roles of individual PTM sites in Kv7.2 channels. All MS data are available via ProteomeXchange with the identifier PXD005567.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号