首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

2.
The separation of rac‐o‐chloromandelic acid 1 with enantiopure aryloxypropylamine via diastereomeric salt formation was investigated. (R)‐o‐chloromandelic acid (R)‐ 1 , a key intermediate for the antithrombotic agent clopidogrel, was obtained in 65% yield and 98% ee by Dutch resolution of rac‐ 1 with (S)‐2‐hydroxyl‐3‐(p‐chlorophenoxy) propylamine (S)‐ 5 as resolving agent and (S)‐2‐hydroxyl‐3‐(o‐nitrophenoxy) propylamine (S)‐ 4 as nucleation inhibitor. Chirality 24:1013–1017, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Separation of optical isomers obtainable from trans‐norborn‐5‐ene‐2,3‐dicarboxylic acid methyl and tert‐butyl monoesters was performed by crystallization of the respective salts prepared with (R)‐ and (S)‐1‐phenylethylamine. Starting from racemic endo‐monomethyl ester of trans‐norborn‐5‐ene‐2,3‐dicarboxylic acid, prepared by partial hydrolysis of the cyclopentadiene‐dimethyl fumarate adduct, the corresponding (2R,3R)‐endo‐monoester was isolated in 97% enantiomeric excess (ee) yield after seven repeated crystallizations from tetrachloromethane. Starting from exo‐mono‐tert‐butyl ester of the same acid, prepared by alcoholysis of the cyclopentadiene‐maleic anhydride adduct followed by isomerization, (2R,3R)‐exo‐monoester was isolated in >98% ee yield after four repeated crystallizations from ethanol. Crystallization of the acids from the mother liquor containing (S)‐1‐phenylethylamine yielded products with inverse stereochemical configuration. Chirality 27:151–155, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Engin ahin 《Chirality》2019,31(10):892-897
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal‐based fermented beverage, was shown as a biocatalyst for the bioreduction of 1‐(benzofuran‐2‐yl) ethanone to (S)‐1‐(benzofuran‐2‐yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1‐(benzofuran‐2‐yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1‐(benzofuran‐2‐yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol by a biological green method. This process is also scalable and has potential in application. In this study, a basic and novel whole‐cell mediated biocatalytic method was performed for the enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production.  相似文献   

5.
A new chemoenzymatic route is reported to synthesize acebutolol, a selective β1 adrenergic receptor blocking agent in enantiopure (R and S) forms. The enzymatic kinetic resolution strategy was used to synthesize enantiopure intermediates (R)‐ and (S)‐N‐(3‐acetyl‐4‐(3‐chloro‐2‐hydroxypropoxy)phenyl)butyramide from the corresponding racemic alcohols. The results showed that out of eleven commercially available lipase preparations, two enzyme preparations (Lipase A, Candida antarctica, CLEA [CAL CLEA] and Candida rugosa lipase, 62316 [CRL 62316]) act in enantioselective manner. Under optimized conditions the enantiomeric excess of both (R)‐ and (S)‐N‐(3‐acetyl‐4‐(3‐chloro‐2‐hydroxypropoxy)phenyl)butyramide were 99.9 and 96.8%, respectively. N‐alkylation of both the (R) and (S) intermediates with isopropylamine gave enantiomerically pure (R and S)‐ acebutolol with a yield 68 and 72%, respectively. This study suggests a high yielding, easy and environmentally green approach to synthesize enantiopure acebutolol. Chirality 27:382–391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
《Chirality》2017,29(9):522-535
New enantiopure dimethyl‐substituted acridino‐18‐crown‐6 and acridino‐21‐crown‐7 ethers containing a carboxyl group at position 9 of the acridine ring [(S,S )‐ 8 , (S,S )‐ 9 , (R,R )‐ 10 ] were synthesized. The pK a values of the new crown ethers [(S,S )‐ 8 , (S,S )‐ 9 , (R,R )‐ 10 ] and of an earlier reported macrocycle [(R,R )‐ 2 ] were determined by UV‐pH titrations. Crown ether (S,S )‐ 8 was attached to silica gel by covalent bonds and the enantiomeric separation ability of the newly prepared chiral stationary phase [(S,S )‐CSP‐ 12 ] was studied by high‐performance liquid chromatography (HPLC). Homochiral preference was observed and the best separation was achieved for the enantiomers of 1‐NEA. Ligands (S,S )‐ 9 and (R,R )‐ 10 are precursors of enantioselective sensor and selector molecules for the enantiomers of protonated primary amines, amino acids, and their derivatives.  相似文献   

7.
Novel enantiopure 1,2,4‐trizole‐3‐thiones containing a benzensulfonamide moiety were synthesized via multistep reaction sequence starting with D‐phenylalanine methyl ester and L‐phenylalanine ethyl ester as a source of chirality. The chemical structures of all compounds were characterized by elemental analysis, UV, IR, 1H NMR, 13C NMR, 2D NMR (HETCOR), and mass spectral data. All compounds were tested in vitro antiviral activity against a broad variety of DNA and RNA viruses and in vitro cytostatic activity against murine leukemia (L1210), human T‐lymphocyte (CEM) and human cervix carcinoma (HeLa) cell lines. Although enantiopure 1,2,4‐triazole‐3‐thione analogs in (R) configuration emerged as promising anti‐influenza A H1N1 subtype in Madin Darby canine kidney cell cultures (MDCK), their enantiomers exhibited no activity. Especially compounds 18a , 21a , 22a , 23a , and 24a (EC50: 6.5, 6.1, 2.4, 1.6, 1.7 μM, respectively) had excellent activity against influenza A H1N1 subtype compared to the reference drug ribavirin (EC50: 8.0 μM). Several compounds have been found to inhibit proliferation of L1210, CEM and HeLa cell cultures with IC50 in the 12–53 μM range. Compound 5a and 27a in (R) configuration were the most active compounds (IC50: 12–22 μM for 5a and IC50: 19–23 μM for 27a ). Chirality 28:495–513, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

9.
Chiral high‐performance liquid chromatography (HPLC) separation and modeling of four stereomers of DL‐leucine‐tryptophan DL‐dipeptide on AmyCoat‐RP column are described. The mobile phase applied was ammonium acetate (10 mM)‐methanol‐acetonitrile (50:5:45, v/v). The flow rate of the mobile phases was 0.8 mL/min with UV detection at 230 nm. The values of retention factors for LL‐, DD‐, DL‐, and LD‐ stereomers were 2.25, 3.60, 5.00, and 6.50, respectively. The values of separation and resolution factors were 1.60, 1.39, and 1.30 and 7.76, 8.05, and 7.19. The limits of detection and quantitation were ranging from 1.0–2.3 and 5.6–14.0 μg/mL. The simulation studies established the elution orders and the mechanism of chiral recognition. It was seen that π–π connections and hydrogen bondings were the main forces for enantiomeric resolution. The reported chiral HPLC method may be applied for the enantiomeric separation of DL‐leucine‐DL‐tryptophan in unknown matrices. Chirality 28:642–648, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
For the first time, a method for enantiomer resolution of the anticonvulsant Galodif (1‐((3‐chlorophenyl)(phenyl)methyl) urea) by chiral HPLC was developed, whereas the enantiomeric composition of 1‐((3‐chlorophenyl)(phenyl)methyl) amine—precursor in Galodif synthesis—cannot be resolved by this method. However, starting 1‐((3‐chlorophenyl)(phenyl)methyl) amine quantitatively forms diastereomeric N‐((3‐chlorophenyl)(phenyl)methyl)‐1‐camphorsulfonamides in reaction with chiral (1R)‐(+)‐ or (1S)‐(?)‐camphor‐10‐sulfonyl chlorides. The diastereomeric ratio of obtained camphorsulfonamides can be easily determined by NMR 1H and 13C spectroscopy. The DFT calculations of specific rotation of Galodif enantiomers showed good agreement with experimental data. The absolute configuration of enantiomers was proposed for the first time.  相似文献   

11.
《Chirality》2017,29(6):247-256
The enantioresolution and determination of the enantiomeric purity of 32 new xanthone derivatives, synthesized in enantiomerically pure form, were investigated on (S ,S )‐Whelk‐O1 chiral stationary phase (CSP). Enantioselectivity and resolution (α and RS) with values ranging from 1.41–6.25 and from 1.29–17.20, respectively, were achieved. The elution was in polar organic mode with acetonitrile/methanol (50:50 v/v ) as mobile phase and, generally, the (R )‐enantiomer was the first to elute. The enantiomeric excess (ee ) for all synthesized xanthone derivatives was higher than 99%. All the enantiomeric pairs were enantioseparated, even those without an aromatic moiety linked to the stereogenic center. Computational studies for molecular docking were carried out to perform a qualitative analysis of the enantioresolution and to explore the chiral recognition mechanisms. The in silico results were consistent with the chromatographic parameters and elution orders. The interactions between the CSP and the xanthone derivatives involved in the chromatographic enantioseparation were elucidated.  相似文献   

12.
Functional triterpenic acids such as ursolic acid (UA), oleanolic acid (OA) and betulinic acid (BA) are representative ingredients in rosemary that may have health benefits. UA, OA and BA in rosemary extracts were derivatized with 4‐(4,5‐diphenyl‐1H‐imidazole‐2‐yl)benzoyl chloride (DIB‐Cl) and detected using HPLC‐fluorescence (FL). Dried rosemary (50 mg) was ground, added to 3 ml of ethanol, sonicated for 40 min, then the sample solution was added to a mixture of 1% trimethylamine and 1 mM DIB‐Cl in acetonitrile. The mixture was settled for 5 min at room temperature, then the DIB‐triterpenic acid derivatives were separated using a Wakopak Handy ODS column (250 × 4.6 mm, 6 μm) eluted with 25 mM acetate buffer (pH 4.5)/methanol/acetonitrile (= 8:10:82 v/v/v%). The fluorescence intensity of the eluent was monitored at 365 (λex) and 490 nm (λem) and the maximum retention time of the derivatives was 30 min. Calibration curves constructed using rosemary extract spiked with standards showed good linearity (r ≥ 0.997) in the range 2.5–100 ng/ml. The detection limits at 3σ for internal BA, UA and OA peaks in rosemary extract were 0.2, 0.4 and 0.5 ng/ml, respectively. This method was used to quantify BA, UA and OA in commercially available dried rosemary products.  相似文献   

13.
The relative merits of the methods employed to determine enantiomeric excess (ee) values and absolute configurations of chiral arene and alkene cis‐1,2‐diol metabolites, including boronate formation, using racemic or enantiopure (+) and (?)‐2‐(1‐methoxyethyl)phenylboronic acid (MEPBA), are discussed. Further applications of: 1) MEPBA derived boronates of chiral mono‐ and poly‐cyclic arene cis‐dihydrodiol, cyclohex‐2‐en‐1‐one cis‐diol, heteroarene cis/trans‐2,3‐diol, and catechol metabolites in estimating their ee values, and 2) new chiral phenylboronic acids, 2‐[1‐methoxy‐2,2‐dimethylpropyl]phenyl boronic acid (MDPBA) and 2‐[1‐methoxy‐1‐phenylmethyl]phenyl boronic acid (MPPBA) and their advantages over MEPBA, as reagents for stereochemical analysis of arene and alkene cis‐diol metabolites, are presented.  相似文献   

14.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
t‐Butyl 6‐cyano‐(3R,5R)‐dihydroxyhexanoate ((3R,5R)‐ 2 ) is a key chiral diol precursor of atorvastatin calcium (Lipitor®). We have constructed a Kluyveromyces lactis aldo‐keto reductase mutant KlAKR‐Y295W/W296L (KlAKRm) by rational design in previous research, which displayed high activity and excellent diastereoselectivity (dep > 99.5%) toward t‐butyl 6‐cyano‐(5R)‐hydroxy‐3‐oxohexanoate ((5R)‐ 1 ). To realize in situ cofactor regeneration, a robust KlAKRm and Exiguobacterium sibiricum glucose dehydrogenase (EsGDH) co‐producer E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm was constructed in this work. Under the optimized conditions, AKR and GDH activities of E. coli BL 21(DE3) pETDuet‐esgdh (MCS1)/pET‐28b (+)‐klakrm peaked at 249.9 U/g DCW (dry cellular weight) and 29100 U/g DCW, respectively. It completely converted (5R)‐ 1 at substrate loading size of up to 60.0 g/L (5R)‐ 1 in the absence of exogenous NADH, which was one‐fifth higher than that of the separately prepared KlAKRm and EsGDH under the same conditions. In this manner, a biocatalytic process for (3R,5R)‐ 2 with productivity of 243.2 kg/m3 d was developed. Compared with the combination of separate expressed KlAKRm with EsGDH, co‐expression of KlAKRm and EsGDH has the advantages of alleviating cell cultivation burden and elevating substrate load. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1235–1242, 2017  相似文献   

16.
As an example of acyclic P‐chiral phosphine oxides, the resolution of ethyl‐(2‐methylphenyl)‐phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl‐(2‐methylphenyl)‐phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal‐forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)‐ethyl‐(2‐methylphenyl)‐phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X‐ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition.  相似文献   

17.
We describe herein the synthesis of (rac)‐ or enantiopure (S)‐(?)‐(2‐MeBu)N(Pr)2MeI ammonium salts. These racemic and enantiopure ammonium salts were used as cationic templates to obtain new two‐dimensional (2D) ferromagnets [(rac)‐(2‐MeBu)N(Pr)2Me][MnCr(C2O4)3] and [(S)‐(?)‐(2‐MeBu)N(Pr)2Me][ΔMnΛ nCr(C2O4)3]. The absolute configuration of the hexacoordinated Cr(III) metallic ion in the enantiopure 2D network was determined by a circular dichroism measurement. The structure of [(2‐MeBu)N(Pr)2Me][MnCr(C2O4)3], established by single crystal X‐ray diffraction, belongs to the chiral P63 space group. According to direct current (dc) magnetic measurements, these compounds are ferrromagnets with a temperature Tc = 6°K. Chirality 25:444–448, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
As a new acidic selector (resolving agent), we synthesized an enantiopure O‐alkyl phenylphosphonothioic acid with a seven‐membered ring ((R)‐ 5 ), which was designed on the basis of the results for the enantioseparation of 1‐arylethylamine derivatives with acyclic O‐ethyl phenylphosphonothioic acid ( I ). The phosphonothioic acid (R)‐ 5 showed unique chirality‐recognition ability in the enantioseparation of 1‐naphthylethylamine derivatives, aliphatic secondary amines, and amino alcohols; the ability was complementary to that of I . The X‐ray crystallographic analyses of the less‐ and more‐soluble diastereomeric salts showed that hydrogen‐bonding networks in the salt crystals are 21‐column‐type with a single exception which is cluster‐type. In the cases of the 21‐column‐type crystals, stability of the crystals is firstly governed by hydrogen bonds to form a 21‐column and secondly determined by intra‐columnar T‐shaped CH/π interaction(s), intra‐columnar hydrogen bond(s), inter‐columnar van der Waals interaction and/or inter‐columnar T‐shaped CH/π interaction(s). In contrast, the cluster‐type salt crystal is stabilized by the assistance of inter‐cluster T‐shaped CH/π and van der Waals interactions. To realize still more numbers of intra‐ and inter‐columnar and ‐cluster T‐shaped CH/π interactions, the seven‐membered ring of (R)‐ 5 plays a considerable role. Chirality 23:438–448, 2011. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The optical resolution of (±)‐cizolirtine was accomplished with excellent results (>99% ee) by means of crystallization with (+)‐ or (−)‐di‐p‐toluoyltartaric acid. The optical purity of the samples was controlled by three independent methods: 1H NMR, capillary electrophoresis (CE) (using β‐cyclodextrins as chiral resolving agents), and HPLC (using a glycoproteic column). The use of a rapid analytical technique like 1H NMR for estimating the relative amounts of each enantiomer, together with the high sensitivity of CE, afforded a convenient strategy for monitoring the entire process leading to enantiopure compounds. Chirality 11:63–69, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号