首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the cardiac ryanodine receptor (RyR2) by elevating cytosolic Ca2+ is a central step in the process of Ca2+-induced Ca2+ release, but the molecular basis of RyR2 activation by cytosolic Ca2+ is poorly defined. It has been proposed recently that the putative Ca2+ binding domain encompassing a pair of EF-hand motifs (EF1 and EF2) in the skeletal muscle ryanodine receptor (RyR1) functions as a Ca2+ sensor that regulates the gating of RyR1. Although the role of the EF-hand domain in RyR1 function has been studied extensively, little is known about the functional significance of the corresponding EF-hand domain in RyR2. Here we investigate the effect of mutations in the EF-hand motifs on the Ca2+ activation of RyR2. We found that mutations in the EF-hand motifs or deletion of the entire EF-hand domain did not affect the Ca2+-dependent activation of [3H]ryanodine binding or the cytosolic Ca2+ activation of RyR2. On the other hand, deletion of the EF-hand domain markedly suppressed the luminal Ca2+ activation of RyR2 and spontaneous Ca2+ release in HEK293 cells during store Ca2+ overload or store overload-induced Ca2+ release (SOICR). Furthermore, mutations in the EF2 motif, but not EF1 motif, of RyR2 raised the threshold for SOICR termination, whereas deletion of the EF-hand domain of RyR2 increased both the activation and termination thresholds for SOICR. These results indicate that, although the EF-hand domain is not required for RyR2 activation by cytosolic Ca2+, it plays an important role in luminal Ca2+ activation and SOICR.  相似文献   

2.
The extent to which Ca2+-induced Ca2+ release (CICR) affects transmitter release is unknown. Continuous nerve stimulation (20–50 Hz) caused slow transient increases in miniature end-plate potential (MEPP) frequency (MEPP-hump) and intracellular free Ca2+ ([Ca2+]i) in presynaptic terminals (Ca2+-hump) in frog skeletal muscles over a period of minutes in a low Ca2+, high Mg2+ solution. Mn2+ quenched Indo-1 and Fura-2 fluorescence, thus indicating that stimulation was accompanied by opening of voltage-dependent Ca2+ channels. MEPP-hump depended on extracellular Ca2+ (0.05–0.2 mM) and stimulation frequency. Both the Ca2+- and MEPP-humps were blocked by 8-(N,N-diethylamino)octyl3,4,5-trimethoxybenzoate hydrochloride (TMB-8), ryanodine, and thapsigargin, but enhanced by CN. Thus, Ca2+-hump is generated by the activation of CICR via ryanodine receptors by Ca2+ entry, producing MEPP-hump. A short interruption of tetanus (<1 min) during MEPP-hump quickly reduced MEPP frequency to a level attained under the effect of TMB-8 or thapsigargin, while resuming tetanus swiftly raised MEPP frequency to the previous or higher level. Thus, the steady/equilibrium condition balancing CICR and Ca2+ clearance occurs in nerve terminals with slow changes toward a greater activation of CICR (priming) during the rising phase of MEPP-hump and toward a smaller activation during the decay phase. A short pause applied after the end of MEPP- or Ca2+-hump affected little MEPP frequency or [Ca2+]i, but caused a quick increase (faster than MEPP- or Ca2+-hump) after the pause, whose magnitude increased with an increase in pause duration (<1 min), suggesting that Ca2+ entry-dependent inactivation, but not depriming process, explains the decay of the humps. The depriming process was seen by giving a much longer pause (>1 min). Thus, ryanodine receptors in frog motor nerve terminals are endowed with Ca2+ entry-dependent slow priming and fast inactivation mechanisms, as well as Ca2+ entry-dependent activation, and involved in asynchronous exocytosis. Physiological significance of CICR in presynaptic terminals was discussed.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

4.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

5.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

6.
The same isoform of ryanodine receptor (RYR1) is expressed in both fast and slow mammalian skeletal muscles. However, differences in contractile activation and calcium release kinetics in intact and skinned fibers have been reported. In this work, intracellular Ca2+ transients were measured in soleus and extensor digitorum longus (EDL) single muscle fibers using mag-fura-2 (K D for Ca2+= 49 μm) as Ca2+ fluorescent indicator. Fibers were voltage-clamped at V h =−90 mV and sarcoplasmic reticulum calcium release was measured at the peak (a) and at the end (b) of 200 msec pulses at +10 mV. Values of a-b and b were assumed to correspond to Ca2+-gated and voltage-gated Ca2+ release, respectively. Ratios (b/a-b) in soleus and EDL fibers were 0.41 ± 0.05 and 1.01 ± 0.13 (n= 12), respectively. This result suggested that the proportion of dihydropyridine receptor (DHPR)-linked and unlinked RYRs is different in soleus and EDL muscle. The number of DHPR and RYR were determined by measuring high-affinity [3H]PN200-110 and [3H]ryanodine binding in soleus and EDL rat muscle homogenates. The B max values corresponded to a PN200-110/ryanodine binding ratio of 0.34 ± 0.05 and 0.92 ± 0.11 for soleus and EDL muscles (n= 4–8), respectively. These data suggest that soleus muscle has a larger calcium-gated calcium release component and a larger proportion of DHPR-unlinked RYRs. Received: 31 August 1995/Revised: 25 January 1996  相似文献   

7.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

8.
BTP2 is an inhibitor of the Ca2+ channel Orai1, which mediates store-operated Ca2+ entry (SOCE). Despite having been extensively used in skeletal muscle, the effects of this inhibitor on Ca2+ handling in muscle cells have not been described. To address this question, we used intra- and extracellular application of BTP2 in mechanically skinned fibers and developed a localized modulator application approach, which provided in-preparation reference and test fiber sections to enhance detection of the effect of Ca2+ handling modulators. In addition to blocking Orai1-dependent SOCE, we found a BTP2-dependent inhibition of resting extracellular Ca2+ flux. Increasing concentrations of BTP2 caused a shift from inducing accumulation of Ca2+ in the t-system due to Orai1 blocking to reducing the resting [Ca2+] in the sealed t-system. This effect was not observed in the absence of functional ryanodine receptors (RYRs), suggesting that higher concentrations of BTP2 impair RYR function. Additionally, we found that BTP2 impaired action potential–induced Ca2+ release from the sarcoplasmic reticulum during repetitive stimulation without compromising the fiber Ca2+ content. BTP2 was found to have an effect on RYR-mediated Ca2+ release, suggesting that RYR is the point of BTP2-induced inhibition during cycles of EC coupling. The effects of BTP2 on the RYR Ca2+ leak and release were abolished by pre-exposure to saponin, indicating that the effects of BTP2 on the RYR are not direct and require a functional t-system. Our results demonstrate the presence of a SOCE channels–mediated basal Ca2+ influx in healthy muscle fibers and indicate that BTP2 has multiple effects on Ca2+ handling, including indirect effects on the activity of the RYR.  相似文献   

9.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

10.
Single channel and [3H]ryanodine binding measurements were performed to test for a direct functional interaction between 2,3-butanedione 2-monoxime (BDM) and the skeletal and cardiac muscle sarcoplasmic reticulum Ca2+ release channels (ryanodine receptors). Single channel measurements were carried out in symmetric 0.25 m KCl media using the planar lipid bilayer method. BDM (1–10 mm) activated suboptimally Ca2+-activated (0.5–1 μm free Ca2+) single, purified and native cardiac and skeletal release channels in a concentration-dependent manner by increasing the number of channel events without a change of single channel conductances. BDM activated the two channel isoforms when added to either side of the bilayer. At a maximally activating cytosolic Ca2+ concentration of 20 μm, BDM was without effect on the cardiac channel, whereas it inhibited skeletal channel activities with IC50≈ 2.5 mm. In agreement with single channel measurements, high-affinity [3H]ryanodine binding to the two channel isoforms was increased in a concentration-dependent manner at ≤1 μm Ca2+. BDM was without a noticeable effect at low (≤0.01 μm) Ca2+ concentrations. At 20 μm Ca2+, BDM inhibited the skeletal but not cardiac channel. These results suggest that BDM regulates the Ca2+ release channels from the sarcoplasmic reticulum of skeletal and cardiac muscle in a concentration, Ca2+ and tissue-dependent manner. Received: 31 December 1998/Revised: 9 March 1999  相似文献   

11.
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.  相似文献   

12.
The mechanisms underlying the Ca2+ release at fertilization of several animal organisms are reported. Four main classical theories are described, i.e., that of Ca2+ release following simple sperm contact and a G protein stimulation; that of simple sperm contact followed by a tyrosine kinase receptor activation; that of the necessity of introduction by sperm into the egg of molecules for Ca2+ release; and that the molecule introduced into the marine eggs for Ca2+ release is the same Ca2+. Two other mechanisms for Ca2+ release are also illustrated: that of ryanodine receptor stimulation and that of NAADP formation.  相似文献   

13.
In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca) recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2), or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA) (p<0.05, p<0.01, respectively). The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively). We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA) exhibited a significant decrease in IK,Ca (p<0.05) and [Ca2+]i fluorescence intensity (p<0.01). An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.  相似文献   

14.
The inhibitor of store-operated Ca2+ entry (SOCE) BTP2 was reported to inhibit ryanodine receptor Ca2+ leak and electrically evoked Ca2+ release from the sarcoplasmic reticulum when introduced into mechanically skinned muscle fibers. However, it is unclear how effects of intracellular application of a highly lipophilic drug like BTP2 on Ca2+ release during excitation–contraction (EC) coupling compare with extracellular exposure in intact muscle fibers. Here, we address this question by quantifying the effect of short- and long-term exposure to 10 and 20 µM BTP2 on the magnitude and kinetics of electrically evoked Ca2+ release in intact mouse flexor digitorum brevis muscle fibers. Our results demonstrate that neither the magnitude nor the kinetics of electrically evoked Ca2+ release evoked during repetitive electrical stimulation were altered by brief exposure (2 min) to either BTP2 concentration. However, BTP2 did reduce the magnitude of electrically evoked Ca2+ release in intact fibers when applied extracellularly for a prolonged period of time (30 min at 10 µM or 10 min at 20 µM), consistent with slow diffusion of the lipophilic drug across the plasma membrane. Together, these results indicate that the time course and impact of BTP2 on Ca2+ release during EC coupling in skeletal muscle depends strongly on whether the drug is applied intracellularly or extracellularly. Further, these results demonstrate that electrically evoked Ca2+ release in intact muscle fibers is unaltered by extracellular application of 10 µM BTP2 for <25 min, validating this use to assess the role of SOCE in the absence of an effect on EC coupling.  相似文献   

15.
The modulation by internal free [Mg2+] of spontaneous calcium release events (Ca2+ “sparks”) from the sarcoplasmic reticulum (SR) was studied in depolarized notched frog skeletal muscle fibers using a laser scanning confocal microscope in line-scan mode (x vs. t). Over the range of [Mg2+] from 0.13 to 1.86 mM, decreasing the [Mg2+] induced an increase in the frequency of calcium release events in proportion to [Mg2+]−1.6. The change of event frequency was not due to changes in [Mg-ATP] or [ATP]. Analysis of individual SR calcium release event properties showed that the variation in event frequency induced by the change of [Mg2+] was not accompanied by any changes in the spatiotemporal spread (i.e., spatial half width or temporal half duration) of Ca2+ sparks. The increase in event frequency also had no effect on the distribution of event amplitudes. Finally, the rise time of calcium sparks was independent of the [Mg2+], indicating that the open time of the SR channel or channels underlying spontaneous calcium release events was not altered by [Mg2+] over the range tested. These results suggest that in resting skeletal fibers, [Mg2+] modulates the SR calcium release channel opening frequency by modifying the average closed time of the channel without altering the open time. A kinetic reaction scheme consistent with our results and those of bilayer and SR vesicle experiments indicates that physiological levels of resting Mg2+ may inhibit channel opening by occupying the site for calcium activation of the SR calcium release channel.  相似文献   

16.
Cellular oxidative stress, associated with a variety of common cardiac diseases, is well recognized to affect the function of several key proteins involved in Ca2+ signaling and excitation-contraction coupling, which are known to be exquisitely sensitive to reactive oxygen species. These include the Ca2+ release channels of the sarcoplasmic reticulum (ryanodine receptors or RyR2s) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxidation of RyR2s was found to increase the open probability of the channel, whereas CaMKII can be activated independent of Ca2+ through oxidation. Here, we investigated how oxidative stress affects RyR2 function and SR Ca2+ signaling in situ, by analyzing Ca2+ sparks in permeabilized mouse cardiomyocytes under a broad range of oxidative conditions. The results show that with increasing oxidative stress Ca2+ spark duration is prolonged. In addition, long and very long-lasting (up to hundreds of milliseconds) localized Ca2+ release events started to appear, eventually leading to sarcoplasmic reticulum (SR) Ca2+ depletion. These changes of release duration could be prevented by the CaMKII inhibitor KN93 and did not occur in mice lacking the CaMKII-specific S2814 phosphorylation site on RyR2. The appearance of long-lasting Ca2+ release events was paralleled by an increase of RyR2 oxidation, but also by RyR-S2814 phosphorylation, and by CaMKII oxidation. Our results suggest that in a strongly oxidative environment oxidation-dependent activation of CaMKII leads to RyR2 phosphorylation and thereby contributes to the massive prolongation of SR Ca2+ release events.  相似文献   

17.
18.
《Cell calcium》2013,53(6):481-487
The regulation of Ca2+ release by luminal Ca2+ has been well studied for the ryanodine and IP3 receptors but has been less clear for the NAADP-regulated channel. In view of conflicting reports, we have re-examined the issue by manipulating luminal Ca2+ with the membrane-permeant, low affinity Ca2+ buffer, TPEN, and monitoring NAADP-induced Ca2+ release in sea urchin egg homogenate. NAADP-induced Ca2+ release was almost entirely blocked by TPEN (IC50 17–25 μM) which suppressed the maximal extent of Ca2+ release without altering NAADP sensitivity. In contrast, Ca2+ release via IP3 receptors was 3- to 30-fold less sensitive to TPEN whereas that evoked by ionomycin was essentially unaffected. The effect of TPEN on NAADP-induced Ca2+ release was not due to an increase in the luminal pH or chelation of trace metals since it could not be mimicked by NH4Cl or phenanthroline. The fact that TPEN had no effect upon ionophore-induced Ca2+ release also argued against a substantial reduction in the driving force for Ca2+ efflux. We propose that, in the sea urchin egg, luminal Ca2+ is important for gating native NAADP-regulated two-pore channels.  相似文献   

19.
Activity-dependent increase in cytosolic calcium ([Ca2+]i) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca2+ from ryanodine-sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca2+-release is not completely understood. In the present study, we optically recorded [Ca2+]i from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca2+ activities and depolarization-induced Ca2+ signals in order to determine the source(s) and properties of [Ca2+]i-dynamics that could lead to a release of Ca2+ from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously occurring miniature Ca2+ events were detected from a group of hippocampal neurons. This miniature Ca2+ event persisted in the nominal Ca2+-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca2+ channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca2+ events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca2+]i in the dendrosomal region. This [Ca2+]i-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca2+]i-transient was caused primarily by the LTCC-mediated Ca2+-influx and a release of Ca2+ from RyR. We observed little contribution from N- or P/Q-type Ca2+ channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC and RyR in a juxtaposed configuration in the proximal dendrites and soma. We conclude in the hippocampal CA1 neuron that: (1) homeostatic fluctuation of the resting membrane potential may be sufficient to initiate functional coupling between LTCC and RyR; (2) the juxtaposed localization of LTCC and RyR has anatomical advantage of synchronizing a Ca2+-release from RyR upon the opening of LTCC; and (3) the synchronized Ca2+-release from RyR occurs immediately after the activation of LTCC and determines the peak amplitude of depolarization-induced global increase in dendrosomal [Ca2+]i.  相似文献   

20.
Imaizumi  Yuji  Ohi  Yoshiaki  Yamamura  Hisao  Morimura  Kozo  Muraki  Katsuhiko 《Neurophysiology》2003,35(3-4):169-174
The contribution of the Ca2+-induced Ca2+ release (CICR) mechanism in excitation-contraction (E-C) coupling and the tightness of the coupling between Ca2+ influx and Ca2+ release are still controversial in smooth muscle cells (SMC). In SMC isolated from the guinea-pig vas deferens or urinary bladder, a depolarizing stimulus initially induced spot-like increases in the intracellular Ca2+ concentration ([Ca2+] i ), called “Ca2+ hot spots,” at several superficial areas in the cell. When a weak stimulus (a small or a short depolarizing step) was applied, only a few Ca2+ hot spots appeared transiently in the superficial area but did not spread into other regions, to trigger global [Ca2+] i rise. Such depolarization-evoked local Ca2+ transients were distinctive from spontaneous Ca2+ sparks, since the former were susceptible to Ca2+ blockers, ryanodine, and inhibitors of the Ca2+ pump in the sarcoplasmic reticulum (SR), suggesting pivotal roles of Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) and Ca2+ release from the SR through ryanodine receptors (RyR) for the activation of Ca2+ spots. Frequently discharging Ca2+ spark sites (FDS) under resting conditions were located exactly in the same areas as Ca2+ hot spots evoked by depolarization, indicating the existence of distinct local junction sites for tight coupling between VDCC in the plasmalemma and RyR in the SR. Co-localization of clusters of RyR and large-conductance Ca2+-activated K+ (BK) channels was also suggested. The fast and tight coupling for CICR in these junctional sites was triggered also by an action potential, whereas a slower spread of Ca2+ wave to the whole-cell areas suggests the loose coupling in propagating CICR to other cell areas. It can therefore be postulated that CICR may occur in two steps upon depolarization; the initial CICR in distinct junctional sites shows tight coupling between Ca2+ influx and release, and the following CICR may propagate slow Ca2+ waves to other areas. Ryanodine receptors form a multiprotein complex with molecules such as calsequestrin, junctin, triadin, junctophilins, and FK506-binding proteins, which directly or indirectly regulate the RyR activity and the tight coupling. Moreover, an evoked Ca2+ spot may enhance Ca2+ uptake by neighboring mitochondria and their ATP production to increase energy supply to the Ca2+ pump of the SR in the microdomain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号