首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathways for the uptake and extrusion of Mg2+ by mitochondria are not well defined. the present evidence suggests that uptake occurs by nonspecific diffusive pathways in response to elevated membrane potential. There is disagreement as to some of the properties of Mg2+ efflux from mitochondria, but the reaction resembles K+ efflux in many ways and may occur in exchange for H+. Matrix free magnesium ion concentration, [Mg2+], can be measured using fluorescent probes and is set very close to cytosol [Mg2+] by a balance between influx and efflux and by the availability of ligands, such as Pi. There are indications that matrix [Mg2+] may be under hormonal control and that it contributes to the regulation of mitochondrial metabolism and transport reactions.  相似文献   

2.
The magnesium buffer coefficient (B Mg) was calculated for BC3H-1 cells from the rise in cytosolic Mg2+ activity observed when magnesium was released from ATP after iodoacetate (IAA) and NaCN treatment. The basal cytosolic Mg2+ activity (0.54±0.1 mM) measured with mag-fura-2 doubled when 4.54 mM magnesium was liberated from ATP:B Mg was 12.9 indicating that a 1 mM increase in Mg2+ activity requires an addition of about 13 mM magnesium. The accuracy of this value depends on these assumptions: (a) all of the magnesium released from ATP stayed in the cells; (b) the rise in Mg2+ was not secondary to pH-induced changes inB Mg; (c) mag-fura-2 measured Mg2+ and not Ca2+; and (d) the accuracy of the mag-fura-2 calibration. Total magnesium did not change in response to IAA/CN treatment, thus the change in Mg2+ activity reflected a redistribution of cell magnesium. pH changes induced by NH4Cl pulse and removal had little effect on Mg2+ activity and the changes were slower than and opposite to pH-induced changes in Ca2+ activity measured by fura-2. Ca2+ responses were temporally uncopled from Mg2+ responses when the cells were treated with IAA only and in no cases did Ca2+ levels rise above 1 M, showing that the mag-fura-2 is responding to Mg2+. Additional studies demonstrated that 90% of the mag-fura-2 signal was cytosolic in origin. The remaining non-diffusible mag-fura-2 either was bound to cytosolic membranes or sequestered in organelles with the fluorescence characteristics of the Mg2+-complexed form, even when cytosolic free Mg2+ activity was approximately 0.5 mM. This bound mag-fura-2 would appear to increase the Kd and thus clearly limits the accuracy of our estimmate forB Mg. Despite this limitation, we demonstrate that Mg2+ is tightly regulated in face of large changes in extracellular Mg2+, and that the interplay observed between pH, Ca2+ and Mg2+ activities strongly supports the hypothesis that these factors interact through a shared buffer capacity of the cell.  相似文献   

3.
Dietary calorie restriction is a broadly acting intervention that extends the lifespan of various organisms from yeast to mammals. On another front, magnesium (Mg2+) is an essential biological metal critical to fundamental cellular processes and is commonly used as both a dietary supplement and treatment for some clinical conditions. If connections exist between calorie restriction and Mg2+ is unknown. Here, we show that Mg2+, acting alone or in response to dietary calorie restriction, allows eukaryotic cells to combat genome-destabilizing and lifespan-shortening accumulations of RNA–DNA hybrids, or R-loops. In an R-loop accumulation model of Pbp1-deficient Saccharomyces cerevisiae, magnesium ions guided by cell membrane Mg2+ transporters Alr1/2 act via Mg2+-sensitive R-loop suppressors Rnh1/201 and Pif1 to restore R-loop suppression, ribosomal DNA stability and cellular lifespan. Similarly, human cells deficient in ATXN2, the human ortholog of Pbp1, exhibit nuclear R-loop accumulations repressible by Mg2+ in a process that is dependent on the TRPM7 Mg2+ transporter and the RNaseH1 R-loop suppressor. Thus, we identify Mg2+ as a biochemical signal of beneficial calorie restriction, reveal an R-loop suppressing function for human ATXN2 and propose that practical magnesium supplementation regimens can be used to combat R-loop accumulation linked to the dysfunction of disease-linked human genes.  相似文献   

4.
Transcellular Mg2+ transport across epithelia, involving both apical entry and basolateral extrusion, is essential for magnesium homeostasis, but molecules involved in basolateral extrusion have not yet been identified. Here, we show that CNNM4 is the basolaterally located Mg2+ extrusion molecule. CNNM4 is strongly expressed in intestinal epithelia and localizes to their basolateral membrane. CNNM4-knockout mice showed hypomagnesemia due to the intestinal malabsorption of magnesium, suggesting its role in Mg2+ extrusion to the inner parts of body. Imaging analyses revealed that CNNM4 can extrude Mg2+ by exchanging intracellular Mg2+ with extracellular Na+. Furthermore, CNNM4 mutations cause Jalili syndrome, characterized by recessive amelogenesis imperfecta with cone-rod dystrophy. CNNM4-knockout mice showed defective amelogenesis, and CNNM4 again localizes to the basolateral membrane of ameloblasts, the enamel-forming epithelial cells. Missense point mutations associated with the disease abolish the Mg2+ extrusion activity. These results demonstrate the crucial importance of Mg2+ extrusion by CNNM4 in organismal and topical regulation of magnesium.  相似文献   

5.
Endogenous magnesium content and magnesium transport of isolated bovine vascular smooth muscle mitochondria were studied. Mitochondria isolated from atherosclerotic bovine arteries contained two to three times as much magnesium (178 nmol/mg of mitochondrial protein) as those isolated from normal arteries (67 nmol/mg of mitochondrial protein). Electron-opaque granules were visible in the unstained unfixed mitochondria and could be shown with electron probe analysis to consist of magnesium, calcium, and phosphorus. At concentrations of external Mg2+ from 0 to 6 mm, the vascular smooth muscle mitochondria exhibited respiratory substrate-supported release of Mg2+ as studied with metallochromic indicator, eriochrome blue, using dual-wavelength spectrophotometry. The maximal velocity of energized release (3 nmol of Mg2+/s/mg of mitochondrial protein) was observed at 4 mm external Mg2+ and the half-maximal transport occurred at 0.5 mm.  相似文献   

6.
Magnesium homeostasis in HL-60 promyelocytic leukemia cells was compared to that in neutrophyl-like HL-60 cells obtained by 1.3% DMSO treatment. Magnesium homeostasis was studied by the characterization of magnesium efflux, the identification of intracellular magnesium pools, and the regulation of intracellular ionized Mg2+. In both undifferentiated and neutrophyl-like HL-60 cells, magnesium efflux occurred via the Na-Mg antiporter which was inhibited by imipramine and stimulated by db cAMP and forskolin. Receptor-mediated signals such as ATP, IFN-α, or PGE1, which can trigger cAMP-dependent magnesium efflux, were ineffective in undifferentiated HL-60 cells but induced 60–70% increase of magnesium efflux in neutrophyl-like HL-60 cells. Selective membrane permeabilization by the cation ionophore A23187 induced a large magnesium release when cells were treated with rotenone. In both cell populations, the addition of glucose to rotenone-treated cells restored magnesium release to the control level. Permeabilization by 0.005% digitonin provoked the release of 90% cell total magnesium in both cell types. Intracellular [Mg2+]i was 0.15 and 0.26 mM in undifferentiated and neutrophyl-like HL-60 cells, respectively. Stimuli that triggered magnesium efflux, such as db cAMP in undifferentiated and IFN-α in neutrophyl-like HL-60 cells, induced a slow but consistent increase of [Mg2+]i which was independent from Ca2+movements. Overall, these data indicate that magnesium homeostasis is regulated by receptor-mediated magnesium efflux which was modified during differentiation of HL-60 cells. Stimulation of magnesium efflux is paralleled by an increase of [Mg2+]i which reflects a release of magnesium from the bound cation pool. J. Cell. Biochem. 71:441–448, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The titration of metal-freed bovine α-lactalbumin with Mg2+ ions causes a two-stepped decrease in the tryptophan fluorescence quantum yield and a pronounced spectral shift towards shorter wavelengths, which seems to be a result of the binding of two magnesium ions to the protein molecule. The magnesium binding constants evaluated from the fluorimetric Mg2+-titration are 2·103 and 2·102 M?1. Mg2+ ions in millimolar concentrations almost do not influence the binding of Ca2+ ions to the protein.  相似文献   

8.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

9.
The rates of adenosine triphosphate (ATP) production by isolated mitochondria and mitochondrial creatime kinase incubated in isotopically pure media containing, separately, 24Mg2+, 25Mg2+, and 26Mg2+ ions were shown to be strongly dependent on the magnesium nuclear spin and magnetic moment. The rate of adenosine 5′-diphosphate phosphorylation in mitochondria with magnetic nuclei25Mg is about twice higher than that with the spinless, nonmagnetic nuclei24.26Mg. When mitochondrial oxidative phosphorylation was selectively blocked by treatment with 1-methylnicotine amide, 25Mg2+ ions were shown to be nearly four times more active in mitochondrial ATP synthesis than 24,26Mg2+ ions. The rate of ATP production associated with creatine kinase is twice higher for 25Mg2+ than for 24.26Mg and does not depend on the blockade of oxidative phosphorylation. There is no difference between 24Mg2+ and 26Mg2+ effects in both oxidative and substrate phophorylation. These observations demonstrate that the enzymatic phosphorylation is a nuclear spin selective process controlled by magnetic isotope effect. The reaction mechanism proposed includes a participation of intermediate ion-radical pairs with Mg+ cation as a radical partner. Therefore, the key mitochondrial phosphotransferases work as a magnesium nuclear spin mediated molecular machines.  相似文献   

10.
In the present work, magnesium deficiency effects were studied in Sulla carnosa plants grown in nutrient solution containing 1.50, 0.05, 0.01, and 0.00 mM Mg2+. After 5 weeks of treatment, fully expanded leaves were harvested to study their morphological and ultrastructural changes, as well as their carbohydrate, pigment, and Mg2+ concentrations. In control plants, leaves were well developed with remarkable green color. Down to 0.05 mM Mg2+, no chlorosis symptom was recorded, but below this concentration, mature leaves showed an appearance of interveinal chlorosis that was much more pronounced at 0.00 mM Mg2+ with the development of necrotic spots. Optima of chlorophyll a, chlorophyll b, and carotenoid concentrations were observed at 0.05 and 1.50 mM Mg2+; leaf magnesium concentration was severely reduced at 0.05 mM Mg2+. A significant decrease in pigment concentrations was noticed at 0.01 mM Mg2+, but the lowest values were recorded at 0.00 mM Mg2+. Enzymatic assays showed an increase in the accumulation of soluble sugars and starch with decreasing Mg2+ concentration. These results were in accordance with those of ultrastructural studies that revealed a marked alteration of chloroplasts in leaves of deficient plants. These chloroplasts were round and bigger as a result of a massive accumulation of oversized starch grains with disrupted thylakoids. As a whole, 1.50, 0.05, and 0.01 mM Mg2+ were found optimal, suboptimal, and deficient concentrations, respectively, the latter showing no significant difference with absolute Mg2+ absence (0.00 mM Mg2+).  相似文献   

11.
The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs.  相似文献   

12.
Magnesium has been investigated as a biodegradable metallic material. Increased concentrations of Mg2+ around magnesium implants due to biodegradation contribute to its satisfactory osteogenic capacity. However, the mechanisms underlying this process remain elusive. We propose that activation of the PI3K/Akt signalling pathway plays a role in the Mg2+-enhanced biological behaviours of osteoblasts. To test this hypothesis, 6, 10 and 18 mM Mg2+ was used to evaluate the stimulatory effect of Mg2+ on osteogenesis, which was assessed by evaluating cell adhesion, cell viability, ALP activity, extracellular matrix mineralisation and RT-PCR. The expression of p-Akt was also determined by western blotting. The results showed that 6 and 10 mM Mg2+ elicited the highest stimulatory effect on cell adhesion, cell viability and osteogenic differentiation as evidenced by cytoskeletal staining, MTT assay results, ALP activity, extracellular matrix mineralisation and expression of osteogenic differentiation-related genes. In contrast, 18 mM Mg2+ had an inhibitory effect on the behaviour of osteoblasts. Furthermore, 10 mM Mg2+ significantly increased the phosphorylation of Akt in osteoblasts. Notably, the aforementioned beneficial effects produced by 10 mM Mg2+ were abolished by blocking the PI3K/Akt signalling pathway through the addition of wortmannin. In conclusion, these results demonstrate that 6 mM and 10 mM Mg2+ can enhance the behaviour of osteoblasts, which is at least partially attributed to activation of the PI3K/Akt signalling pathway. Furthermore, a high concentration (18 mM Mg2+) showed an inhibitory effect on the biological behaviour of osteoblasts. These findings advance the understanding of cellular responses to biodegradable metallic materials and may attract greater clinical interest in magnesium.  相似文献   

13.
The discovery of the powerful magnesium isotope effect on enzymatic ATP synthesis provides a new insight into the mechanochemistry of enzymes as molecular machines. The catalytic activities of ATPase, creatine kinase, and glycerophsphate kinase containing a Mg2+ ion with magnetic isotope nuclei (25Mg) were found to be two to four times higher than those of the enzymes with spinless, nonmagnetic magnesium cation isotopes (24Mg or 26Mg). This demonstrates unambiguously that ATP synthesis is a spin-selective process involving Mg2+ as the electron-accepting reagent. ATP synthesis proceeds in an ion-radical pair consisting of an ADP oxyradical and Mg2+. In this process, the magnesium bivalent cation is the key agent that transforms the mechanics of a protein molecule into chemical processes. This ion is the crucial structural component of enzymes as mechanochemical molecular machines.  相似文献   

14.
Aquaporins are important transmembrane water transport proteins which transport water and several neutral molecules. However, how aquaporins are involved in the synergistic transport of Mg2+and water remains poorly understood. Here, we found that the cassava aquaporin Me PIP2;7 was involved in Mg2+transport through interaction with Me MGT9, a lower affinity magnesium transporter protein. Knockdown of Me PIP2;7 in cassava led to magnesium deficiency in basal mature leaves wi...  相似文献   

15.
In this study, we wanted to examine the effect of magnesium (Mg2+) supplementation on the experimental 3-methyl cholantrene (3-MC)-induced fibrosarcoma and alterations in (Mg2+) distribution in several tissues of the rats, during carcinogenesis. It was determined that serum and tissue (Mg2+) levels of the rats in (Mg2+)-supplemented diet group were higher than those of the rats in the (Mg2+)-nonsupplemented and control groups. The mean time of fibrosarcoma development for (Mg2+)-supplemented group was longer than (Mg2+)-nonsupplemented group (p<0.05). Symptoms of hypermagnesemia were not observed in any of the rats. These results suggests that dietary (Mg2+) supplementation may have a partial anticarcinogenic effect on experimental 3-MC-induced fibrosarcoma by prolongation of the latent period of carcinogenesis.  相似文献   

16.
Effects of fatty acids on Ca2+-ATPase and Mg2+-ATPase in the microsomal fraction of rat submandibular gland have been investigated. Saturated fatty acids had almost no effect, but unsaturated fatty acids inhibited both ATPases. Modes of inhibition by linoleic acid were as follows: competitive for calcium and ATP with Ca2+-ATPase; non-competitive for magnesium and ATP with Mg2+-ATPase  相似文献   

17.
The present study tested the hypothesis that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in Ca2+/Calmodulin-dependent-kinase (CaM Kinase) IV and Protein Tyrosine Kinase (PTK ) activities. Animals were randomly divided into normoxic (Nx), hypoxic (Hx) and magnesium-pretreated hypoxic (Mg2+-Hx) groups. Cerebral hypoxia was confirmed biochemically by measuring ATP and phosphocreatine (PCr) levels. CaM Kinase IV and PTK activities were determined in Nx, Hx and Mg2+-Hx newborn piglets. There was a significant difference between CaM kinase IV activity (pmoles/mg protein/min) in Nx (270 ± 49), Mg2+-Hx (317 ± 82) and Hx (574 ± 41, P < 0.05 vs. Nx and Mg2+-Hx) groups. Similarly, there was a significant difference between Protein Tyrosine Kinase activity (pmoles/mg protein/h) in normoxic (378 ± 68), Mg2+-Hx (455 ± 67) and Hx (922 ± 66, P < 0.05 vs. Nx and Mg2+-Hx ) groups. We conclude that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in CaM Kinase IV and Protein Tyrosine Kinase activities. We propose that by blocking the NMDA receptor ion-channel mediated Ca2+-flux, magnesium sulfate administration inhibits the Ca2+/calmodulin-dependent activation of CaMKIV and prevents the generation of nitric oxide free radicals and the subsequent increase in PTK activity. As a result, phosphorylation of CREB and Bcl-2 family of proteins is prevented leading to prevention of programmed cell death.  相似文献   

18.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Na0- and Mg0-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+---Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+---Na+ exchange) or external Mg2+ (Mg2+---Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na0+-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+---Ca2+ exchange mechanism, Mg2+---Mg2+ exchange is not activated by external monovalent cations. (5) ATPγS replaces ATP in activating Mg2+---Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   

19.
TRPM7 is a novel magnesium-nucleotide-regulated metal current (MagNuM) channel that is regulated by serum Mg2+ concentrations. Changes in Mg2+ concentration have been shown to alter cell proliferation in various cells; however, the mechanism and the ion channel(s) involved have not yet been identified. Here we demonstrate that TRPM7 is expressed in control and prostate cancer cells. Supplementation of intracellular Mg-ATP or addition of external 2-aminoethoxydiphenyl borate inhibited MagNuM currents. Furthermore, silencing of TRPM7 inhibited whereas overexpression of TRPM7 increased endogenous MagNuM currents, suggesting that these currents are dependent on TRPM7. Importantly, although an increase in the serum Ca2+/Mg2+ ratio facilitated Ca2+ influx in both control and prostate cancer cells, a significantly higher Ca2+ influx was observed in prostate cancer cells. TRPM7 expression was also increased in cancer cells, but its expression was not dependent on the Ca2+/Mg2+ ratio per se. Additionally, an increase in the extracellular Ca2+/Mg2+ ratio led to a significant increase in cell proliferation of prostate cancer cells when compared with control cells. Consistent with these results, age-matched prostate cancer patients also showed a subsequent increase in the Ca2+/Mg2+ ratio and TRPM7 expression. Altogether, we provide evidence that the TRPM7 channel has an important role in prostate cancer and have identified that the Ca2+/Mg2+ ratio could be essential for the initiation/progression of prostate cancer.  相似文献   

20.
Pierre Leblanc  Hubert Clauser 《BBA》1974,347(2):193-201
1. The accumulation of calcium phosphate driven by succinate oxidation is ADP-dependent. In its absence the accumulation stops after a short incubation time and the oxygen uptake is permanently stimulated. This uncoupled oxygen uptake is insensitive to the inhibitors of phosphate transport, like mersalyl and N-ethylmaleimide. When ADP plus Mg2+ are added to the medium, or when ADP is added in the initial presence of magnesium, the inhibitory action of the thiol reagents on oxygen uptake is re-established. ADP alone or Mg2+ alone are without any effect.2. Phosphate/phosphate exchange has been studied, in the absence of ADP, when calcium phosphate accumulation had stopped and oxygen uptake is uncoupled. Under these conditions the exchange process becomes insensitive to thiol reagents. Sensitivity is recovered solely in the presence of ADP plus Mg2+.3. When mitochondrial swelling is studied according to the method of Chappell, it also appears that the phosphate carrier loses it sensitivity to mersalyl in the absence of ADP, which confirms the data obtained with phosphate/phosphate exchange experiments. When ADP plus Mg2+ are added (or present), together with mersalyl, the action of the thiol inhibitor is recovered. ADP and magnesium are inactive separately. EGTA plus Mg2+ (but not EGTA plus ADP) may substitute for ADP plus Mg2+ in this process.4. A possible interaction between the magnesium binding site and the phosphate carrier is considered and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号