首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gangliosides play important roles in the development, differentiation and proliferation of mammalian cells. They bind to other cell membrane components through their terminal sialic acids. Different gangliosides influence cellular functions based on the positions and linkages of sialic acids. Expression of gangliosides mainly depends on the status of sialic acid-modulatory enzymes, such as different types of sialyltransferases and sialidases. One such sialyltransferase, disialoganglioside GD3 synthase, is specifically responsible for the production of GD3. Pancreatic ductal adenocarcinoma, making up more than 90% of pancreatic cancers, is a fatal malignancy with poor prognosis. Despite higher sialylation status, the disialoganglioside GD3 level is very low in this cancer. However, the exact status and function of this disialoganglioside is still unknown. Here, we intended to study the intracellular mechanism of disialoganglioside GD3-induced apoptosis and its correlation with the adhesion and angiogenic pathways in pancreatic cancer. We demonstrated that disialoganglioside GD3 synthase-transfected cells showed enhanced apoptosis and it caused the arrest of these cells in the S-phase of the cell cycle. Integrins, a family of transmembrane proteins play important role in cell–cell recognition, invasion, adhesion and migration. disialoganglioside GD3 co-localised with integrin-β1 and thereby inhibited it's downstream signalling in transfected cells. Transfected cells exhibited inhibition of cell adhesion with extracellular matrix proteins. Enhanced GD3 expression down regulated angiogenesis-regulatory proteins and inhibited epidermal growth factor/vascular endothelial growth factor-driven angiogenic cell growth in these cells. Taken together, our study provides support for the GD3-induced cell cycle arrest, disruption of integrin-β1-mediated anchorage, inhibition of angiogenesis and thereby induced apoptosis in pancreatic cancer cells.  相似文献   

2.
Since its discovery, the BRCA1 tumor suppressor has been shown to play a role in multiple DNA damage response pathways. Here, we will review the involvement of BRCA1 in base-excision DNA repair and highlight its clinical implications.  相似文献   

3.
Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.  相似文献   

4.
The role of proteases in modifying the microenvironment of tumour cells has long been recognised. With the discovery of the protease-activated receptor family of G protein-coupled receptors a mechanism for cells to sense and respond directly to proteases in their microenvironment was revealed. Many early studies described the roles of protease-activated receptors in the cellular events that occur during blood coagulation and inflammation. More recently, studies have begun to focus on the roles of protease-activated receptors in the establishment, progression and metastasis of a variety of tumours. This review will focus on the expression of protease-activated receptor-2 and its activators by normal and neoplastic tissues, and describe current evidence that activation of protease-activated receptor-2 is an important event at multiple stages of tumour progression and in pain associated with cancer.  相似文献   

5.
Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.  相似文献   

6.
Mechanisms associated with the progression of non-alcoholic fatty liver disease (NAFLD) remain unclear. We attempted to identify the pattern of altered gene expression at different time points in a high fat diet (HFD)-induced NAFLD mouse model. The early up-regulated genes are mainly involved in the innate immune responses, while the late up-regulated genes represent the inflammation processes. Although recent studies have shown that microRNAs play important roles in hepatic metabolic functions, the pivotal role of microRNAs in the progression of NAFLD is not fully understood. We investigated the functions of miR-451, which was identified as a target gene in the inflammatory process in NAFLD. miR-451 expression was significantly decreased in the palmitate (PA)-exposed HepG2 cells and in liver tissues of HFD-induced non-alcoholic steatohepatitis (NASH) mice. Its decreased expressions were also observed in liver specimens of NASH patients. In vitro analysis of the effect of miR-451 on proinflammatory cytokine provided evidence for negative regulation of PA-induced interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) production. Furthermore, miR-451 over-expression inhibited translocation of the PA-induced NF-κB p65 subunit into the nucleus. Our result showed that Cab39 is a direct target of miRNA-451 in steatotic cells. Further study showed that AMPK activated through Cab39 inhibits NF-κB transactivation induced in steatotic HepG2 cells. miR-451 over-expression in steatotic cells significantly suppressed PA-induced inflammatory cytokine. These results provide new insights into the negative regulation of miR-451 in fatty acid-induced inflammation via the AMPK/AKT pathway and demonstrate potential therapeutic applications for miR-451 in preventing the progression from simple steatosis to severely advanced liver disease.  相似文献   

7.
Glucose-regulated protein of 78 kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial–mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial–mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis.  相似文献   

8.
More than 85% of all human cancers possess the ability to maintain chromosome ends, or telomeres, by virtue of telomerase activity. Loss of functional telomeres is incompatible with survival, and telomerase inhibition has been established in several model systems to be a tractable target for cancer therapy. As human tumour cells typically maintain short equilibrium telomere lengths, we wondered if enforced telomere elongation would positively or negatively impact cell survival. We found that telomere elongation beyond a certain length significantly decreased cell clonogenic survival after gamma irradiation. Susceptibility to irradiation was dosage-dependent and increased at telomere lengths exceeding 17 kbp despite the fact that all chromosome ends retained telomeric DNA. These data suggest that an optimal telomere length may promote human cancer cell survival in the presence of genotoxic stress.  相似文献   

9.
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.  相似文献   

10.
11.
《遗传学报》2014,41(10):529-537
Tumor necrosis factor receptor-associated protein 1 (TRAP1), an important member of mitochondrial heat shock protein 90 family, is involved in multiple biological processes in several types of tumors. However, its pathological role in esophageal squamous cell cancer (ESCC) remains unknown. Herein, we demonstrated the clinical value of TRAP1, and its role in apoptosis and motility in ESCC. The clinical potential of TRAP1 was investigated through immunohistochemical analysis in 328 ESCC samples, which revealed that strong TRAP1 expression was associated with increased risk of lymph node metastasis, while high TRAP1 expression correlated with poor prognosis. Expression of TRAP1 was found to be an independent prognostic factor for patients with ESCC. Additionally, the upregulation of TRAP1 antagonized cisplatin-induced apoptosis while its downregulation sensitized cells to cisplatin-induced apoptosis. As revealed by the transwell assay, TRAP1 overexpression promoted cellular migration and invasion as compared to the control groups. In contrast, silencing of endogenous TRAP1 expression attenuated the ability of migration and invasion. Finally, the molecular mechanism investigated in the present study demonstrated that TRAP1-mediated migration and invasion occurred through STAT3/MMP2 signaling pathway. In conclusion, TRAP1 may be considered as a molecular predictive marker for prognosis and a novel molecular candidate for therapeutic target in ESCC.  相似文献   

12.
13.
Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER – adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) – promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and effective targeted chemopreventive and chemotherapeutic agents.  相似文献   

14.
Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers. The nucleotide excision repair (NER) pathway removes different types of DNA damage including those produced by UV light and components of tobacco smoke. The aim of the present study was to investigate the effect of sodium arsenite on the NER pathway in human lung fibroblasts (IMR-90 cells) and primary mouse keratinocytes. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers (CPDs). We find a concentration-dependent inhibition of the removal of 6-4 PPs and CPDs in both cell types treated with arsenite. Treatment of both cell types with arsenite resulted in a significant reduction in the abundance of XPC, a protein that is critical for DNA damage recognition in NER. The abundance of RNA expressed from several key NER genes was also significantly reduced by treatment of IMR-90 cells with arsenite. Finally, treatment of IMR-90 cells with MG-132 abrogated the reduction in XPC protein, suggesting an involvement of the proteasome in the reduction of XPC protein produced by treatment of cells with arsenic. The inhibition of NER by arsenic may reflect one mechanism underlying the role of arsenic exposure in enhancing cigarette smoke-induced lung carcinogenesis and UV light-induced skin cancer, and it may provide some insights into the emergence of arsenic trioxide as a chemotherapeutic agent.  相似文献   

15.
Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL–ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL–GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL–ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL–ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli.  相似文献   

16.
Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phoshate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.  相似文献   

17.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   

18.
Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer’s disease.  相似文献   

19.
《Cytokine》2015,72(2):360-365
Pre-eclampsia is a multi-system condition in pregnancy that is characterised by the onset of hypertension and proteinuria in women after the 20th week and it remains a leading cause of maternal and fetal mortality. Despite this the causative molecular basis of pre-eclampsia remains poorly understood. As a result, an intensive research effort has focused on understanding the molecular mechanisms involved in pre-eclampsia and using this information to identify new pre-symptomatic bio-markers of the condition. Activin A and its receptor, ACVR2A, have been extensively studied in this regard.Activin A is a member of the transforming growth factor (TGF)-β superfamily that has a wide range of biological functions depending on the cellular context. Recent work has shown that polymorphisms in ACVR2A may be a genetic risk factor for pre-eclampsia. Furthermore, both placenta and serum levels of Activin A are significantly increased in pre-eclampsia suggesting that Activin A may be a possible biomarker for the condition. Here we review the latest advances in this field and link these with new molecular data that suggest that the oxidative stress and pro-inflammatory cytokine production seen in pre-eclampsia may result in increased placental Activin A secretion in an attempt to maintain placental function.  相似文献   

20.
《Cancer epidemiology》2014,38(2):144-151
BackgroundDyslipidemia is an established risk factor for many diseases, but its effect on colorectal cancer risk is less clear. We investigated the association of colorectal cancer risk with plasma triglycerides, total, HDL, and LDL cholesterol in four Italian EPIC centers.MethodsWe conducted a case–cohort study on participants recruited to four Italian EPIC centers (Turin, Varese, Naples, and Ragusa; 34,148 subjects). A random subcohort of 850 subjects was obtained and 286 colorectal cancer cases were diagnosed. Triglycerides, total and HDL cholesterol were determined in plasma samples obtained at baseline and stored at −196 °C; LDL cholesterol was calculated. Hazard ratios (HR) with 95% confidence intervals (CI), adjusted for potential confounders, were estimated by Cox regression models using the Prentice method.ResultsThe highest tertiles of total (HR 1.66, 95%CI 1.12–2.45) and LDL cholesterol (HR 1.87, 95%CI 1.27–2.76) were associated with increased colorectal cancer risk compared to lowest tertiles. Risks were greater for men than women, and for postmenopausal than premenopausal women. Highest tertiles of total and LDL cholesterol were also significantly associated with increased risks of colon cancer, distal colon cancer, and rectal cancer, but not proximal colon cancer.ConclusionsOur findings suggest that high levels of total and LDL cholesterol increase colorectal cancer risk, particularly in men and postmenopausal women. However additional studies are needed to clarify the role of plasma lipids in these cancers, particularly in view of the conflicting findings of previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号