首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes and metabolites associated with mitigation of paraquat toxicity were compared in two paraquat-tolerant mutants and a sensitive wild-type strain of the fern Ceratopteris richardii Brongn. In 21-day-old gametophytes, the specific activities of superoxide dismutase, catalase, peroxidase, glutathione reductase, dehydroascorbate reductase, and ascorbate peroxidase showed no differences that would explain mutant tolerance. Constitutive levels of ascorbate and glutathione also did not differ significantly in the three strains. An experiment testing the inducibility of paraquat tolerance revealed no change in the dose response of mutant or wild type gametophytes after exposure to sublethal concentrations of the herbicide. Uptake of paraquat by whole gametophytes was also equivalent in mutants and wild type. These data suggest that the physiological basis for tolerance in these mutants, unlike several other tolerant biotypes reported, does not lie in the oxygen radical scavenging system, in an inducible stress response, or in a block to whole-plant uptake.  相似文献   

2.
The Photocontrol of Spore Germination in the Fern Ceratopteris richardii   总被引:1,自引:0,他引:1  
This paper describes how different wavelengths of light regulatespore germination in the fern Ceratopteris richardii. This speciesdoes not exhibit any dark germination. Maximum photosensitivityof the spores is reached 7 to 10 d after imbibition. An increasein the red light fluence above the threshold fluence of 1016quanta.m–2 leads to a corresponding increase in germination.In sequential irradiation experiments, farred light can reversethis red light-mediated germination to the level observed withthe far-red light control. Blue light fluences above 1020 quanta.m–2can also block the germination response to red light. Moreover,this antagonistic effect of blue light is not reversed by subsequentirradiation with red light. It is therefore concluded that phytochromeand a distinct blue light photoreceptor control C. richardiispore germination. These interpretations are entirely consistentwith the published literature on other fern genera. (Received November 28, 1986; Accepted April 6, 1987)  相似文献   

3.
 Gravity directs the early polar development in single cells of Ceratopteris richardii Brogn. It acts over a limited period of time during which it irreversibly determines the axis of the spore cell's development. A self-referencing calcium selective electrode was utilized to record the net movement of calcium across the cell membrane at different positions around the periphery of the spore during the period in which gravity orients the polarity of the spore. A movement of calcium into the cell along the bottom and out of the cell along the top was detected. This movement was specific, polarized, and strongest in a direction that opposed the vector of gravity. Treatment with nifedipine, a calcium-channel blocker, diminished the calcium current and caused the cell to lose its responsiveness to the orienting influence of gravity. Results shown suggest that calcium plays a crucial role in the ability of a single cell to respond to gravity and in the subsequent establishment of its polarity. Received: 13 June 1999 / Accepted: 1 September 1999  相似文献   

4.
The cytokinins benzylaminopurine, kinetin and isopentenyladenine induce photomorphogenesis in dark-grown gametophytes of the fern Ceratopteris richardii. At sub-nanomolar concentrations each altered the rate and pattern of cell division, elongation and differentiation, mimicking aspects of the light-mediated transition from filamentous to prothallial growth. Untreated dark-grown gametophytes grow as narrow, elongate, asexual filaments with an apical meristem. Cytokinin treatments as low as 10(-12) M reduced the length-to-width ratio through decreased cell elongation, increased periclinal cell division and induced the formation of rhizoid initials in the cells immediately below the apical meristem. Higher concentrations (10(-9)-10(-8) M) induced conversion of the meristem from apical to notch morphology. Cytokinins induced both red- and blue-light-mediated photomorphogenic events, suggesting stimulation of both phytochrome and cryptochrome signaling; however, cytokinin treatment only partially substituted for light in that it did not induce hermaphroditic sexual development or spore germination in the dark. Additionally, cytokinins did not increase chlorophyll synthesis in dark-grown gametophytes, which unlike angiosperms are able to produce mature chloroplasts in the dark. Cytokinin treatment had only slight effects on light-grown gametophytes. These results suggest evolutionary conservation between angiosperms and pteridophytes in the role of cytokinins in regulating photomorphogenesis.  相似文献   

5.
Rhizoids of the fern Ceratopteris richardii Brogn. usually emerge 40 h after germination is initiated by light, and more than 90% of them emerge growing in a downward direction. However, when the spores are germinated on a clinostat, the emerging rhizoids show no preferential orientation. This indicates that under normal 1 · g conditions the initial growth direction of rhizoids can be oriented by gravity. If the orientation of the spores is changed 3 h or less after the start of germination, the growth direction of most emerging rhizoids becomes downward relative to the new orientation. However, if the orientation of the spores is changed by 180° 8 h or more after germination is initiated by light, most rhizoids emerge growing upward; i.e., the same direction as if there had been no orientation change. Emerged rhizoids also do not change their direction of growth if their orientation is changed. These results indicate that the growth direction of emerging rhizoids is set by gravity prior to actual emergence, and that the time of full orientation responsiveness is limited to a period ranging from the initiation of germination to about 3–4 h after the start of germination. There is a gravity-oriented nuclear movement beginning at about 13 h after germination, and this movement appears to predict the initial growth direction of rhizoids.These studies were made possible by grant NAGW 1519 to S.J.R. and grant NGT-51065 to E.S.E., both from the National Aeronautics and Space Administration.  相似文献   

6.
7.
Homosporous ferns have extremely high chromosome numbers relative to flowering plants, but the species with the lowest chromosome numbers show gene expression patterns typical of diploid organisms, suggesting that they may be diploidized ancient polyploids. To investigate the role of polyploidy in fern genome evolution, and to provide permanent genetic resources for this neglected group, we constructed a high-resolution genetic linkage map of the homosporous fern model species, Ceratopteris richardii (n = 39). Linkage map construction employed 488 doubled haploid lines (DHLs) that were genotyped for 368 RFLP, 358 AFLP, and 3 isozyme markers. Forty-one linkage groups were recovered, with average spacing between markers of 3.18 cM. Most loci (approximately 76%) are duplicated and most duplicates occur on different linkage groups, indicating that as in other eukaryotic genomes, gene duplication plays a prominent role in shaping the architecture of fern genomes. Although past polyploidization is a potential mechanism for the observed abundance of gene duplicates, a wide range in the number of gene duplicates as well as the absence of large syntenic regions consisting of duplicated gene copies implies that small-scale duplications may be the primary mode of gene duplication in C. richardii. Alternatively, evidence of past polyploidization(s) may be masked by extensive chromosomal rearrangements as well as smaller-scale duplications and deletions following polyploidization(s).  相似文献   

8.
Ceratopteris richardii is an aquatic fern grown in tropical and subtropical regions of the world. It is proven to be a productive model system for studies in the genetics, biochemistry, and cell biology of basic biologic processes that occur in early gametophytic development. It provides several advantages to biologists, especially those interested in gravitational biology, polarity development, and in the genetics of sexual development. It is easy to culture, has a relatively short life cycle, and offers an array of attractive features that facilitate genetic studies. The germination and early development of large populations of genetically identical spores are easy to synchronize, and both the direction of polarity development and cell-level gravity responses can be measured and readily manipulated within the first 24 h of spore development. Although there is no reliable transformation system available yet in Ceratopteris, recent studies suggest that the technique of RNA interference can be used to block translation of specific genes in a related fern, Marsilea, and current studies will soon reveal the applicability of this approach, as well as of other transformation approaches, in Ceratopteris. A recently completed expressed sequence tag (EST) sequencing project makes available the partial sequence of more than 2000 cDNAs, representing a significant percentage of the genes being expressed during the first 24 h of spore germination, when many developmentally interesting processes are occurring. A microarray of these ESTs is being constructed, so especially for those scientists interested in basic cellular phenomena that occur early in spore germination, the availability of the ESTs and of the microarray will make Ceratopteris an even more attractive model system.  相似文献   

9.
Plants, in general, have a high proportion of their CpG and CpNpG nucleotide motifs modified with 5-methylcytosine (5mC). Developmental changes in the proportion of 5mC are evident in mammals, particularly during gametogenesis and embryogenesis, but little information is available from flowering plants due to the intimate association of gametes with sporophytic tissues. In ferns, sperm are uninucleate and free-swimming and thus are easily isolated. We have examined 5mC in DNA isolated from fern sperm and other tissues with methylation-sensitive and -insensitive restriction enzyme isoschizomers, Southern blots probed with chloroplast and nuclear ribosomal RNA genes and end-labeled restriction fragments. We conclude that fern sperm DNA is methylated to a similar or greater degree than DNA isolated from either sporophytes or gametophytes.  相似文献   

10.
Strap-shaped prothalli of CERATOPTERIS: richardii grown in the dark have an apical meristem, a subapical elongation zone and a basal growth cessation zone [Murata et al. (1997) Plant Cell Physiol. 38: 201]. When the dark-grown prothalli were irradiated with continuous white light, marginal cells of the elongation zone divided asymmetrically, and the resulting smaller cells developed into rhizoids. The asymmetric division was also induced by brief irradiation of red light. The effect of red light was cancelled by subsequent irradiation of far-red light, indicating that the asymmetric division was regulated by phytochrome. Since the response to red light was not observed at 10(1) J m(-2) and saturated at 10(2) J m(-2) and the response is photoreversible by far-red light, the photoresponse was classified as a low-fluence response of phytochrome. Although the asymmetric division was induced by brief irradiation of red light, continuous irradiation of white, blue or red light was necessary to induce rhizoid growth. These results indicate that asymmetric division and subsequent cell growth are independently regulated by light in CERATOPTERIS: prothalli.  相似文献   

11.
12.
The homosporous fern Ceratopteris richardii exhibits a homorhizic root system where roots originate from the shoot system. These shoot-borne roots form lateral roots (LRs) that arise from the endodermis adjacent to the xylem poles, which is in contrast to flowering plants where LR formation arises from cell division in the pericycle. A detailed study of the fifth shoot-borne root showed that one lateral root mother cell (LRMC) develops in each two out of three successive merophytes. As a result, LRs emerge alternately in two ranks from opposite positions on a parent root. From LRMC initiation to LR emergence, three developmental stages were identified based on anatomical criteria. The addition of auxins (either indole-3-acetic acid or indole-3-butyric acid) to the growth media did not induce additional LR formation, but exogenous applications of both auxins inhibited parent root growth rate. Application of the polar auxin-transport inhibitor N-(1-naphthyl)phthalamic acid (NPA) also inhibited parent root growth without changing the LR initiation pattern. The results suggest that LR formation does not depend on root growth rate per se. The result that exogenous auxins do not promote LR formation in C. richardii is similar to reports for certain species of flowering plants, in which there is an acropetal LR population and the formation of the LRs is insensitive to the application of auxins. It also may indicate that different mechanisms control LR development in non-seed vascular plants compared with angiosperms, taking into consideration the long and independent evolutionary history of the two groups.  相似文献   

13.
14.
Summary Three nuclear mutations that affect tolerance to the herbicide paraquat have been selected in the fern Ceratopteris richardii. Two of the mutations, pq2 and pq45 are allelic and confer low and moderate tolerance, respectively. A third mutation, pqa6, is not linked to the other two and significantly enhances the level of tolerance when in combination with either pq2 or pq45. The pqa6 mutation does not independently confer tolerance in the absence of the other mutations.  相似文献   

15.
Motile sperm cells of land plants are released directly into the environment and encounter numerous constraints on their way to the egg. Sperm cell organization, shape, size, and plasticity are crucial to the processes associated with fertilization. We conducted an ultrastructural investigation to detail insemination (sperm release, swimming and movement within the archegonium) and fertilization in the model fern Ceratopteris richardii. Gametophytes were grown from spores using sterile culture techniques and flooded in water when sexually mature. Materials were examined at different stages post-flooding. During insemination in C. richardii, the sperm cytoskeleton and flagella rearrange, and the coils of the cell extend while entering the neck canal. In this nearly linear configuration, the dense ridge, a densely compacted band of filaments presumed to be actin, expands to surround the leading edge of the sperm cell. This ridge fuses with the receptive site on the female gamete and is the sperm component that initiates contact with the egg nuclear envelope. All cellular components, except plastids, enter the egg cytoplasm. Sperm mitochondria are distinguishable from those of the egg because they are encased by two or three additional membranes and are sequestered from the zygote cytoplasm. During karyogamy, the sperm components, including the microtubule cytoskeleton (spline) and flagella, maintain their spatial integrity. Microtubules play key roles not only in sperm cell structure but also in facilitating karyogamy in this fern. After karyogamy is completed, microtubule arrays of the sperm cell and the components of the locomotory apparatus are disassembled. We provide the first demonstration of the likely involvement of sperm actin in egg penetration in land plants and new insights into the fate of paternal organelles. This study points to the roles sperm cell structure and dynamics play in the intricate processes of insemination and fertilization in land plants.  相似文献   

16.
17.
The stl1 and stl2 mutations confer low and high levels of NaCl tolerance to gametophytes of the fern Ceratopteris richardii, respectively. As an initial characterization of these mutations, the levels of various organic solutes, tissue ion content and water relations were examined in the wild-type and mutant strains in the absence and presence of 60 mol m-3 NaCl stress (a level which results in a 20, 15 and 0% reduction in gametophyte growth in the wild-type, stl1 mutant and stl2 mutant, respectively). All strains exhibited major changes in organic and inorganic solute levels and water relations in response to 60 mol m-3 NaCl stress. Differences in organic solute levels and water relations between the wild-type and mutant strains in the absence and in response to 60 mol m-3 NaCl stress were minimal. Analysis of tissue ion content showed that stl1 was associated with a slight reduction in Na+ accumulation during 60 mol m-3 NaCl stress. stl2 was associated with (1) higher constitutive levels of K+ and (2) continued selective accumulation of K+ and reduced accumulation of Na+ during 60 mol m-3 NaCl stress. A K+/Na+ ratio close to 1 was observed in the wild-type during 60 mol m-3 NaCl stress, while higher ratios were detected in stl1 and stl2 (1·7 and 4·0, respectively). The findings of this study suggest that the tolerance imparted by stl1 and stl2 is associated with altered ion accumulation during NaCl stress, rather than an enhanced ability to accumulate organic solutes to be used for osmotic adjustment of the cytoplasm.  相似文献   

18.
Freshly collected spores of strain Hn-n of Ceratopteris richardii Brongn. require storage for several months before attaining maximum germination rate. Treatments using (2-chloroethyl)phosphonic acid increased germination rate in freshly collected spores and decreased germination rate in older spores.  相似文献   

19.
This comprehensive study of early embryology in Ceratopteris richardii combines light microscopy with the first ultrastructural evaluation of any pteridophyte embryo. Emphasis is placed on ontogeny of the foot and placental transfer cells. The embryology of C. richardii shares many similarities with that of other polypodiacious ferns while exhibiting distinctive division patterns. Formative embryonic stages have been reconstructed into three-dimensional models for ease of interpretation. The zygote divides perpendicular to the gametophyte plane and anterioposterior axis. This division establishes a prone embryological habit that maximizes rapid independent establishment of a leaf-root axis in a cordate gametophyte. After the formation of a globular eight-celled stage, initials of the first leaf, and root and shoot apical meristems are defined early by discrete formative divisions. Concomitantly, the foot expands and differentiates to transport nutrients from the gametophyte for the developing embryonic organs. Transfer cell wall ingrowth deposition begins in the gametophyte placental cells before the adjacent sporophyte cells just after the eight-celled stage. These observations provide an anatomical framework for future comparative developmental genetic studies of embryogenesis in free-sporing plants.  相似文献   

20.
Lopez  Renee A.  Renzaglia  Karen S. 《Planta》2016,243(4):947-957
Planta - Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号