首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identifying it as a potential anti‐obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential different biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that (?)‐C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)‐C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity. Chirality 25:281–287, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
When added to the hepatocyte incubation medium, vanadate increased the rate of fatty acid synthesis de novo as well as the activity of acetyl-CoA carboxylase, whereas it had no effect on the activity of fatty acid synthase. On the other hand, and despite elevating the intracellular levels of malonyl-CoA, vanadate diverted exogenous fatty acids into the oxidation pathway at the expense of the esterification route. This was concomitant to an increase in carnitine palmitoyltransferase I activity. All these effects were not significantly different between periportal and perivenous hepatocytes and were also evident in cells incubated in Ca2(+)-free medium. Nevertheless, Ca2+ ions enhanced carnitine palmitoyltransferase I activity in isolated liver mitochondria. In addition, the effects of vanadate on acetyl-CoA carboxylase and carnitine palmitoyltransferase I were only evident in a permeabilized-cell assay, disappearing upon cell disruption and isolation of the corresponding cell subfraction for enzyme assay. Results show that vanadate exerts specific insulin-like and non-insulin-like effects on hepatic fatty acid metabolism, and suggest that the intracellular concentration of malonyl-CoA is not the only factor responsible for the regulation of the fatty-acid-oxidative process in the liver.  相似文献   

4.
Carnitine palmitoyltransferase I (CPT-I) and II (CPT-II) enzymes are components of the carnitine palmitoyltransferase shuttle system which allows entry of long-chain fatty acids into the mitochondrial matrix for subsequent oxidation. This system is tightly regulated by malonyl-CoA levels since this metabolite is a strong reversible inhibitor of the CPT-I enzyme. There are two distinct CPT-I isotypes (CPT-Ialpha and CPT-Ibeta), that exhibit different sensitivity to malonyl-CoA inhibition. Because of its ability to inhibit fatty acid synthase, C75 is able to increase malonyl-CoA intracellular levels. Paradoxically it also activates long-chain fatty acid oxidation. To identify the exact target of C75 within the CPT system, we expressed individually the different components of the system in the yeast Pichia pastoris. We show here that C75 acts on recombinant CPT-Ialpha, but also on the other CPT-I isotype (CPT-Ibeta) and the malonyl-CoA insensitive component of the CPT system, CPT-II.  相似文献   

5.
C75 is a potential drug for the treatment of obesity. It was first identified as a competitive, irreversible inhibitor of fatty acid synthase (FAS). It has also been described as a malonyl-CoA analogue that antagonizes the allosteric inhibitory effect of malonyl-CoA on carnitine palmitoyltransferase I (CPT I), the main regulatory enzyme involved in fatty acid oxidation. On the basis of MALDI-TOF analysis, we now provide evidence that C75 can be transformed to its C75-CoA derivative. Unlike the activation produced by C75, the CoA derivative is a potent competitive inhibitor that binds tightly but reversibly to CPT I. IC50 values for yeast-overexpressed L- or M-CPT I isoforms, as well as for purified mitochondria from rat liver and muscle, were within the same range as those observed for etomoxiryl-CoA, a potent inhibitor of CPT I. When a pancreatic INS(823/13), muscle L6E9, or kidney HEK293 cell line was incubated directly with C75, fatty acid oxidation was inhibited. This suggests that C75 could be transformed in the cell to its C75-CoA derivative, inhibiting CPT I activity and consequently fatty acid oxidation. In vivo, a single intraperitoneal injection of C75 in mice produced short-term inhibition of CPT I activity in mitochondria from the liver, soleus, and pancreas, indicating that C75 could be transformed to its C75-CoA derivative in these tissues. Finally, in silico molecular docking studies showed that C75-CoA occupies the same pocket in CPT I as palmitoyl-CoA, suggesting an inhibiting mechanism based on mutual exclusion. Overall, our results describe a novel role for C75 in CPT I activity, highlighting the inhibitory effect of its C75-CoA derivative.  相似文献   

6.
beta-Conglycinin decreased blood triacylglycerol (TAG) levels in male Wistar adult rats. Liver mitochondrial carnitine palmitoyltransferase activity in the beta-conglycinin-fed group significantly increased as against the casein-fed group. Hepatic fatty acid synthase activity in the beta-conglycinin group significantly decreased as against that of the casein-fed group. Fecal fatty acid excretion in the beta-conglycinin group was significantly higher than in the casein group.  相似文献   

7.
A. Van Tol  W. C. Hü  lsmann 《BBA》1969,189(3):342-353
1. The distribution of palmitoyl-CoA:carnitine palmitoyltransferase has been studied in subcellular fractions of rat liver. By using two different estimations for the enzyme activity and by differential centrifugation and linear sucrose density gradient centrifugation, the enzyme is shown to be localized both in mitochondria and microsomes.

2. The mitochondrial palmitoyl-CoA: carnitine palmitoyltransferase is localized in the inner membrane plus matrix fraction.

3. During palmitate oxidation by isolated mitochondria, in the presence of a physiological concentration of carnitine, palmitoylcarnitine accumulates. From this and experiments with sonicated mitochondria, it is concluded that the capacities of long-chain fatty acid activation and of palmitoyl-CoA:carnitine palmitoyltransferase in vitro by far exceed the capacity of fatty acid oxidation.  相似文献   


8.
Diminished sensitivity of hepatic carnitine palmitoyltransferase to inhibition by malonyl-CoA in the fasting and diabetic states is a well-recognized aspect of the regulatory mechanism forhepatic fatty acid oxidation. Inhibition of myocardial carnitine palmitoyltransferase by malonyl-CoA may play an important role in regulation of fatty acid oxidation in the heart, but there has been a discrepancy in data relating to changes in malonyl-CoA sensitivity of the myocardial carnitine palmitoyltransferase during fasting. Analysis of malonyl-CoA inhibition of myocardial carnitine palmitoyltransferase in fasting and fed states under a variety of conditions has indicated that under no condition could any difference be found in malonyl-CoA sensitivity that was attributable to fasting. Proteolysis of the outer carnitine palmitoyltransferase led to artifactual changes in sensitivity due to the appearance of partial inhibition. We have concluded that the sensitivity of myocardial carnitine palmitoyltransferase to malonyl-CoA does not change during fasting. Changes in fatty acid oxidation in the heart are probably due to changes in malonyl-CoA concentrations or to other inhibitors. (Mol Cell Biochem 116: 39–45, 1992)  相似文献   

9.
Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.  相似文献   

10.
We have examined the potential role of fatty acid oxidation (FAO) in AMP‐activated protein kinase (AMPK)‐induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase‐1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP‐arrested cumulus cell‐enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75‐induced maturation but was ineffective in cerulenin‐treated oocytes, suggesting that the meiosis‐inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO. Mol. Reprod. Dev. 76: 844–853, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
An assay procedure for carnitine palmitoyltransferase is described which allows rapid measurement of the overt activity of this enzyme in isolated rat hepatocytes. In a one-step procedure digitonin permeabilizes the plasma membrane and at the same time carnitine palmitoyltransferase activity is measured. The use of the present procedure shows that carnitine palmitoyltransferase activity is regulated on the short term by different types of agonists. Thus, insulin, epidermal growth factor, vasopressin and the phorbol ester PMA inhibit carnitine palmitoyltransferase activity, whereas glucagon treatment renders the enzyme more active. These changes in enzyme activity coincide with corresponding changes in the rate of fatty acid oxidation.  相似文献   

12.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

13.
Peroxisomal carnitine palmitoyltransferase was purified by solubilization using Tween 20 and KCl from the large granule fraction of the liver of clofibrate-treated chick embryo, DEAE-Sephacel and blue Sepharose CL-6B column chromatography. The peroxisomal carnitine palmitoyltransferase was an Mr 64,000 polypeptide; the mitochondrial carnitine palmitoyltransferase had a subunit molecular weight of 69,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carnitine acetyltransferase was an Mr 64,000 polypeptide. Antibody against purified peroxisomal carnitine palmitoyltransferase reacted only with peroxisomal carnitine palmitoyltransferase, but not with mitochondrial carnitine palmitoyltransferase or carnitine acetyltransferase. In addition, anti-peroxisomal carnitine palmitoyltransferase reacted only with the protein in peroxisomes purified from chick embryo liver by sucrose density gradient centrifugation. Thus, it was confirmed that purified peroxisomal carnitine palmitoyltransferase was a peroxisomal protein. Compared with mitochondrial carnitine palmitoyltransferase, peroxisomal carnitine palmitoyltransferase was extremely resistant to inactivation by trypsin. The pH optimum of peroxisomal carnitine palmitoyltransferase was 8.5, differing from that of mitochondrial carnitine palmitoyltransferase. The Km value of peroxisomal carnitine palmitoyltransferase for palmitoyl-CoA (32 microM) was similar to that of the mitochondrial one, whereas those values for L-carnitine (140 microM), palmitoyl-L-carnitine (43 microM) and CoA (9 microM) were lower than those of mitochondrial carnitine palmitoyltransferase. Peroxisomal carnitine palmitoyltransferase exhibited similar substrate specificities in both the forward and reverse reactions, with the highest activity toward lauroyl derivatives. Furthermore, this enzyme showed relatively high affinities for long-chain acyl derivatives (C10-C16) and similar Km values (30-50 microM) for acyl-CoAs, acylcarnitine and CoA, and a constant Km value (approximately 150 microM) for carnitine. These results indicate that peroxisomal carnitine palmitoyltransferase played a role in the modulation of the intracellular CoA/long-chain acyl-CoA ratio at the hatching stage of chicken when long-chain fatty acids are actively oxidized in peroxisomes.  相似文献   

14.
C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.  相似文献   

15.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

16.
Conjugated linoleic acid (CLA), a mixture of positional and geometric isomers of linoleic acid, has attracted considerable attention because of its potentially beneficial biologic effects both in vitro and in vivo. Our results clearly show the specific action of the 10trans,12cis-CLA isomer against hyperlipidemia and obesity in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. After 2 weeks of feeding with 10t,12c-CLA, but not 9cis,11trans-CLA, abdominal adipose tissue weight and serum and hepatic lipid levels in OLETF rats were lower than those in linoleic acid-fed rats. These effects were attributable to suppressed fatty acid synthesis and enhanced fatty acid beta oxidation in the liver on a 10t,12c-CLA diet. Additionally, we showed that mRNA expression of fatty acid synthase, carnitine palmitoyltransferase, leptin, and sterol regulatory element binding protein-1 was also regulated by 10t,12c-CLA. We suppose that 10t,12c-CLA reveals hypolipidemic and anti-obese activity through the alteration of mRNA expressions in the liver and white adipose tissue.  相似文献   

17.
The sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate was decreased markedly in liver mitochondria isolated from either 48 h-starved or streptozotocin-diabetic rats. These treatments of the rat also decreased the sensitivity of fatty acid oxidation by isolated hepatocytes to inhibition by this compound. Furthermore, incubation of hepatocytes prepared from fed rats with N6O2'-dibutyryl cyclic AMP also decreased the sensitivity, whereas incubation of hepatocytes prepared from starved rats with lactate plus pyruvate had the opposite effect on 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation. The sensitivity of carnitine palmitoyltransferase I of mitochondria to 4-hydroxyphenylglyoxylate increased in a time-dependent manner, as previously reported for malonyl-CoA. Likewise, oleoyl-CoA activated carnitine palmitoyltransferase I in a time-dependent manner and prevented the sensitization by 4-hydroxyphenylglyoxylate. Increased exogenous carnitine caused a moderate increase in fatty acid oxidation by hepatocytes under some conditions and a decreased 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation at low oleate concentration, without decreasing the difference in 4-hydroxyphenylglyoxylate inhibition between fed- and starved-rat hepatocytes. Time-dependent changes in the conformation of carnitine palmitoyltransferase I or the membrane environment may be involved in differences among nutritional states in 4-hydroxyphenylglyoxylate-sensitivity of carnitine palmitoyltransferase I.  相似文献   

18.
Fatty acid oxidation was studied in isolated liver mitochondria of rats during the suckling-weaning transition. The oxidation rate of oleyl-CoA and palmitoylcarnitine was reduced 2.5-fold in rats weaned on a high-carbohydrate diet compared to suckling rats, when acetyl-CoA produced by beta-oxidation was directed towards ketone-body synthesis. Weaning on a high-fat diet minimized this change. Channeling of acetyl-CoA towards citrate synthesis doubled the oxidation rate of both substrates in HC-weaned rats. Thus, in addition to changes in carnitine palmitoyltransferase I activity, the beta-hydroxymethylglutaryl-CoA synthase pathway is also involved in the decreased fatty acid oxidation at weaning. This was confirmed by measurement of beta-hydroxymethylglutaryl-CoA synthase pathway activity.  相似文献   

19.
The influence of the dietary nitric oxide (NO) synthase inhibitor, L-N omega nitroarginine (L-NNA) on body fat was examined in rats. In experiment 1, all rats were fed with the same amount of diet with or without 0.02% L-NNA for 8 wk. L-NNA intake caused elevations in serum triglyceride and body fat, and reduction in serum nitrate (a metabolite of nitric oxide). The activity of hepatic carnitine palmitoyltransferase was reduced by L-NNA. In experiment 2, rats were fed for 8 wk with the same amount of diets with or without 0.02% L-NNA supplemented or not with 4% L-arginine. The elevation in body fat, and the reductions in serum nitrate and in the activity of hepatic carnitine palmitoyltransferase by L-NNA were all suppressed by supplemental L-arginine. The results suggest that lower NO generation elevated not only serum triglyceride, but also body fat by reduced fatty acid oxidation.  相似文献   

20.
3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号