首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang SH  Bai ZW  Yin CQ  Li SR  Pan ZQ 《Chirality》2007,19(2):129-140
Two new chiral polymers of different molecular weights were synthesized by the copolymerization of (1R,2R)-(+)-1,2-diphenylethylenediamine, phenyl diisocyanate and terephthaloyl chloride. The polymers were immobilized on aminated silica gel to afford two chiral stationary phases. The polymers and the corresponding chiral stationary phases were characterized by Fourier transform-IR, elemental analysis, 1H and 13C NMR. The surface coverages of chiral structural units on the chiral stationary phases were estimated as 0.27 and 0.39 mmol/g, respectively. The enantioseparation ability of these chiral stationary phases was evaluated with a variety of chiral compounds by high-performance liquid chromatography. The effects of the organic additives, the composition of mobile phases, and the injection amount of sample on enantioseparation were investigated. A comparison of enantioseparation ability between these two chiral stationary phases was made. It was believed that the chain length of polymeric chiral selector significantly affected the enantioseparation ability of corresponding chiral stationary phase.  相似文献   

2.
Kubota T  Yamamoto C  Okamoto Y 《Chirality》2002,14(5):372-376
Cyclopentyl and (+/-)-exo-2-norbornylcarbamates of cellulose and amylose were prepared and their chiral recognition abilities as chiral stationary phases for high-performance liquid chromatography (HPLC) were evaluated. Among these carbamates, cellulose tris(cyclopentylcarbamate) and amylose tris((+/-)-exo-2-norbornylcarbamate) showed particularly high chiral recognition, which is comparable to that of several well-known phenylcarbamate derivatives. The chiral recognition mechanism of cellulose tris(cyclohexylcarbamate), which was previously found to be an effective chiral stationary phase for HPLC, was investigated using NMR spectroscopy. The derivative dissolved in chloroform exhibited the chiral discrimination of several enantiomers in NMR as well as in HPLC. For example, the 1,1'-bi-2-naphthol enantiomers were distinctly discriminated in the (1)H, (13)C, and 2D-NOESY spectra.  相似文献   

3.
《Chirality》2017,29(3-4):147-154
Separations of six dihydropyridine enantiomers on three commercially available cellulose‐based chiral stationary phases (Chiralcel OD‐RH, Chiralpak IB, and Chiralpak IC) were evaluated with high‐performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol‐modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n‐hexane/isopropanol (85:15, v /v) for nimodipine (R  = 5.80) and cinildilpine (R  = 5.65); n‐hexane/isopropanol (92:8, v /v) for nicardipine (R  = 1.76) and nisoldipine (R  = 1.92); and n‐hexane/isopropanol/ethanol (97:2:1, v /v/v) for felodipine (R  = 1.84) and lercanidipine (R  = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.  相似文献   

4.
Chen J  Li MZ  Xiao YH  Chen W  Li SR  Bai ZW 《Chirality》2011,23(3):228-236
(2S,3S)-2,3-Bis(3,5-dimethylphenylcarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid and (2S,3S)-2,3-bis(1-naphthalenecarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid were synthesized from D-tartaric acid. These two compounds were chlorinated to afford two chiral selectors for chiral stationary phases (CSPs). The selectors were separately immobilized on aminated silica gel to give two single selector CSPs; and were simultaneously immobilized to obtain a mixed selector CSP. Comparing to the single selector CSPs, the mixed selector CSP bears the enhanced enantioseparation ability, suggesting that the two selectors in the mixed selector CSP are consistent for chiral recognition in most mobile phase conditions.  相似文献   

5.
L ‐Dibenzoyl tartaric acid was mono‐esterified with benzyl alcohol, and then chlorinated with SOCl2 to give (2S,3S)‐1‐(benzyloxy)‐4‐chloro‐1,4‐dioxobutane‐2,3‐diyl dibenzoate (Selector 1 ). (1R,2R)‐1,2‐Diphenylethylenediamine was mono‐functionalized with phenyl isocyanate and phenylene diisocyanate in sequence to give (1R,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐ isocyanatophenylurea (Selector 2 ). Two brush‐type chiral stationary phases (CSPs) of single selector were prepared by separately immobilizing selectors 1 and 2 on aminated silica gel. Selectors 1 and 2 were simultaneously immobilized on aminated silica gel to give a mixed selector CSP. The enantioseparation ability of these CSPs was studied. The CSP of selector 1 has strongest separation ability, while the enantioseparation ability of the mixed selector CSP is relatively lower. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Up to now, some chiral metal‐organic frameworks (MOFs) have been reported for enantioseparation in liquid chromatography. Here we report a homochiral MOF, [Cd2(d‐cam)3]·2Hdma·4dma, used as a new chiral stationary phase for high‐performance liquid chromatographic enantioseparation. Nine racemates of alcohol, naphthol, ketone, and base compounds were used as analytes for evaluating the separation properties of the chiral MOF packed column. Moreover, some effects such as mobile phase composition, column temperature, and analytes mass for separations on this chiral column also were investigated. The relative standard deviations for the resolution values of run‐to‐run and column‐to‐column were less than 2.1% and 3.2%, respectively. The experimental results indicate that the homochiral MOF offered good recognition ability, which promotes the application of chiral MOFs use as stationary phase for enantioseparation. Chirality 28:340–346, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Yin CQ  He BJ  Huang SH  Zhang JY  Bai ZW  Li ZY 《Chirality》2008,20(7):846-855
Four dendrimers were synthesized on aminopropyl-modified silica gel using methyl acrylate and ethylene diamine as building blocks by divergent method. Four generations of chiral stationary phases (CSPs) were prepared by coupling of L-2-(p-toluenesulfonamido)-3-phenylpropionyl chloride to corresponding dendrimers. The derivatives prepared on silica gel were characterized by FT-IR, (1)H NMR, and elemental analysis. The selector loadings of these four generations of CSPs generally showed a decrease tendency with the increase of generation numbers of dendrimers. The enantioseparation properties of these CSPs were preliminarily investigated by high-performance liquid chromatography. The CSP derived from the three-generation dendrimer exhibited the best enantioseparation capability. Effects of the mobile phase composition and molecular structures of racemic mixtures on enantioseparation were further studied.  相似文献   

8.
Lai XH  Bai ZW  Ng SC  Ching CB 《Chirality》2004,16(9):592-597
Two chiral stationary phases, ph-alpha-CD and ph-gamma-CD, were prepared from mono(6(A)-azido-6(A)-deoxy)perphenylcarbamoylated alpha- and gamma-cyclodextrin immobilized onto silica gel via the Staudinger reaction. The chromatographic characteristics of these two chiral stationary phases were evaluated. The influence of different cyclodextrins (CDs) on the enantioselectivities was also investigated in this study. Compared to ph-gamma-CD, ph-alpha-CD exhibited quite good enantioselectivity toward the analytes with bulky molecular structures. It was found that the formation of inclusion complex might play a quite important role in the chiral recognition not only under reverse phases but also under normal phases.  相似文献   

9.
Coating cellulose tris (3,5‐dimethylphenylcarbamate) (CDMPC) on silica gels with large pores have been demonstrated as an efficient way for the preparation of chiral stationary phase (CSP) for high‐performance liquid chromatography (HPLC). During the process, a number of parameters, including the type of coating solvent, amount of coating, and the method for subsequent solvent removing, have been proved to affect the performance of the resultant CSPs. Coating times and the concentration of coating solution, however, also makes a difference to CSPs' performance by changing the arrangement of cellulose derivatives while remaining the coating amount constant, have much less been studied before, and thereby, were systematically investigated in this work. Results showed that CSPs with more coating times exhibited higher chiral recognition and column efficiency, suggesting that resolution was determined by column efficiency herein. Afterwards, we also investigated the effect of coating amount on the performance of CSPs, and it was shown that the ability of enantio‐recognition did not increase all the time as the coating amount; and four of seven racemates achieved best resolution when the coating amount reached to 18.37%. At the end, the reproducibility of CDMPC‐coated CSPs were further confirmed by two methods, ie, reprepared the CSP‐0.15‐3 and reevaluated the effect of coating times.  相似文献   

10.
Yin CQ  He BJ  Li SR  Liu YQ  Bai ZW 《Chirality》2009,21(4):442-448
A chiral selector was prepared through the reaction between (1S,2R)-(+)-2-amino-1,2-diphenylethanol and phenyl isocyanate. This selector was immobilized on aminated silica gel, respectively, with bifunctional group linkers of 1,4-phenylene diisocyanate, methylene-di-p-phenyl diisocyanate, and terephthaloyl chloride to produce corresponding three chiral stationary phases. The prepared compounds and chiral stationary phases were characterized by FT-IR, elemental analysis, (1)H NMR, and solid-state (1)H NMR. The enantioseparation ability of these chiral stationary phases was evaluated with structurally various chiral compounds. The chiral stationary phase prepared with 1,4-phenylene diisocyanate as linker showed excellent enantioseparation ability. The influence of different linkages on the enantioseparation was discussed.  相似文献   

11.
In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L‐2‐(p‐toluenesulfonamido)‐3‐phenylpropionyl chloride (selector I), and the CSP derived from three‐generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs ( CSPs 1‐4 ) were prepared by immobilizing (1S,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐isocyanatophenylcarbamate (selector II) on one‐ to four‐generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Kubota T  Yamamoto C  Okamoto Y 《Chirality》2004,16(5):309-313
Three novel cycloalkylcarboxylates, cyclopentyl, cyclohexyl, and 1-adamantylcarboxylates of cellulose and amylose were prepared and their chiral recognition abilities as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were evaluated using a methanol-water mobile phase. Among these esters, cellulose tris(cyclohexylcarboxylate) showed a relatively high chiral recognition ability. The 1-adamantylcarboxylates of cellulose and amylose showed dissimilar chiral recognition abilities from the other two, probably due to the low degree of substitution and the high hydrophobicity of this group.  相似文献   

13.
The graphene oxide (GO) was covalently coupled to the surfaces of silica gel (SiO2) microspheres by amide bond to get the graphene oxide@silica gel (GO@SiO2). Then, the GO@SiO2 was reduced with hydrazine to the reduced graphene oxide@silica gel (rGO@SiO2), and the cellulose derivatives were physically coated on the surfaces of rGO@SiO2 to prepare a chiral stationary phase (CSP) for high performance liquid chromatography. Under the optimum experimental conditions, eight benzene‐enriched enantiomers were separated completely, and the resolution of trans‐stilbene oxide perfectly reached 4.83. Compared with the blank column of non‐bonded rGO, the separation performance is better on the new CSP, which is due to the existence of rGO to produce special retention interaction with analytes, such as π‐π stacking, hydrophobic effect, π‐π electron‐donor–acceptor interaction, and hydrogen bonding. Therefore, the obtained CSP shows special selectivity for benzene‐enriched enantiomers, improves separation selectivity and efficiency, and rGO plays a synergistic effect with cellulose derivatives on enantioseparation.  相似文献   

14.
Cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) was coated on large-pore silica gels and used as a chiral stationary phase (CSP) for high-performance liquid chromatographic separation of enantiomers. The influences of pore size of silica gel, coating amount of CDMPC, coating solvent, and column temperature on chiral discrimination were investigated. CSPs prepared with a large-pore silica gel having a small surface area showed higher chiral recognition. The amount of CDMPC adsorbed on the silica gel influenced the chiral recognition of some racemates. Loading capacity of racemates increased with an increase of the amount of CDMPC supported on the silica gel, and a CSP coated with 45% CDMPC by weight can be used for both analytical and semi-preparative scale separations. The CDMPC, coated using acetone as the coating solvent, exhibited, in many cases, higher enantioselectivity than that obtained with tetrahydrofuran F as the coating solvent. © 1996 Wiley-Liss, Inc.  相似文献   

15.
A novel high‐performance liquid chromatography (HPLC) multifunctional immobilized chiral stationary phase was prepared by bonding dialdehyde microcrystalline cellulose to aminosilica via Schiff base reaction and then derivatized with 3,5‐dimethylphenyl isocyanate. The HPLC multifunctional immobilized chiral stationary phase could not only achieve chiral separation but also achieve achiral separation. Chiral separation evaluation showed that 1‐(1‐naphthyl)ethanol and mandelonitrile got separation in normal phase (NP) mode. Ranolazine, benzoin ethyl ether, metalaxyl, and diclofop were successfully separated in reversed phase (RP) mode. Aromatic compounds such as polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids were selected as analytes to investigate the achiral separation performance of the multifunctional immobilized chiral stationary phase in NP and RP modes. The achiral separation evaluation showed that six PAHs could get good separation within 10 minutes in NP mode. Four aromatic acids were well separated in RP mode. The retention mechanism of aromatic compounds on the stationary phase was discussed, founding that π‐π interaction, π‐π electron‐donor‐acceptor (EDA) interaction, and hydrogen bonding interaction played important roles during the achiral separation process. This multifunctional immobilized chiral stationary phase had the advantages of simple bonding steps, short reaction time, and no need for space arm.  相似文献   

16.
Various cellulose-2,3-bis-arylcarbamate-6-O-arylesters and cellulose-2,3-bis-arylester-6-O-arylcarbamates, designed to test the possible combined effects of the known tris-arylcarbamate and tris-arylester classes, were synthesized with high regioselectivity at O-C(6), and their use as CSP s in liquid chromatography for enantiomeric separations was investigated. The separations obtained with the synthesized CSP s were compared to the separations achieved on a self-packed reference column, consisting of cellulose-tris-(3,5-dimethylphenyl-carbamate) as CSP standard. Among the synthesized, regioselectively substituted cellulose derivatives, 2,3-bis-O-(3,5-dimethylphenylcarbamate)-6-O-benzoate-cellulose and 2,3-bis-O-(benzoate)-6-O-(3,5-dichlorophenylcarbamate)-cellulose gave the best CSP s for the separation of the test racemates. CSP s from regioselectively substituted cellulose derivatives seem to exhibit higher selectivities than cellulose-tris-(3,5-dimethylphenylcarbamate) for certain classes of racemic compounds. Chirality 10:294–306, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Phenylcarbonate, benzoylformate, and p-toluenesulfonylcarbamate of cellulose and five new benzoylcarbamate derivatives of both cellulose and amylose were synthesized and their chiral recognition abilities were evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Cellulose benzoylcarbamate has a higher chiral recognition ability compared to phenylcarbonate, p-toluenesulfonylcarbamate, and benzoylformate of cellulose. The benzoylcarbamate derivatives exhibited a characteristic chiral recognition for the racemates, which bear a hydrogen atom capable of hydrogen bonding to the carbonyl group of the benzoylcarbamates. The structures of the benzoylcarbamates were investigated by CD spectroscopy.  相似文献   

18.
A small amount of 4‐(trimethoxysilyl)phenyl groups was randomly introduced onto the 3,5‐dimethylphenylcarbamates of cellulose and amylose by a one‐pot method. The obtained derivatives were then effectively immobilized onto silica gel as chiral packing materials (CPMs) for high‐performance liquid chromatography through intermolecular polycondensation of the trimethoxysilyl groups. The effects of the amount of 4‐(trimethoxysilyl)phenyl groups on immobilization and enantioseparation were investigated. Also, the solvent durability of the immobilized‐type CPMs was examined with the eluents containing chloroform and tetrahydrofuran. When these eluents were used, the chiral recognition abilities of the CPMs for most of the tested racemates were improved to some extent depending on the compounds. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5‐dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC‐coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative‐coated CSP was also prepared as contrast. The chiral separation performance of NCC‐based CSP was evaluated and compared with MCC‐based CSP by high‐performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC‐based CSP with better peak shape and higher column efficiency than MCC‐based CSP, which confirmed that NCC‐based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376–381, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The assignment of the absolute configuration of novel anti-inflammatory pyrrole derivatives has been accomplished by a combined strategy based on independent physical methods. The key step of our stereochemical characterization approach is the production at mg-scale of enantiomerically pure forms by HPLC on Chiralpak IA stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号