首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Smooth muscle responds to IP3‐generating agonists by producing Ca2+ waves. Here, the mechanism of wave progression has been investigated in voltage‐clamped single smooth muscle cells using localized photolysis of caged IP3 and the caged Ca2+ buffer diazo‐2. Waves, evoked by the IP3‐generating agonist carbachol (CCh), initiated as a uniform rise in cytoplasmic Ca2+ concentration ([Ca2+]c) over a single though substantial length (~30 µm) of the cell. During regenerative propagation, the wave‐front was about 1/3 the length (~9 µm) of the initiation site. The wave‐front progressed at a relatively constant velocity although amplitude varied through the cell; differences in sensitivity to IP3 may explain the amplitude changes. Ca2+ was required for IP3‐mediated wave progression to occur. Increasing the Ca2+ buffer capacity in a small (2 µm) region immediately in front of a CCh‐evoked Ca2+ wave halted progression at the site. However, the wave front does not progress by Ca2+‐dependent positive feedback alone. In support, colliding [Ca2+]c increases from locally released IP3 did not annihilate but approximately doubled in amplitude. This result suggests that local IP3‐evoked [Ca2+]c increases diffused passively. Failure of local increases in IP3 to evoke waves appears to arise from the restricted nature of the IP3 increase. When IP3 was elevated throughout the cell, a localized increase in Ca2+ now propagated as a wave. Together, these results suggest that waves initiate over a surprisingly large length of the cell and that both IP3 and Ca2+ are required for active propagation of the wave front to occur. J. Cell. Physiol. 224: 334–344, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
《Cell calcium》2015,58(5-6):348-365
High environmental salt elicits an increase in cytosolic Ca2+ ([Ca2+]cyt) in plants, which is generated by extracellular Ca2+ influx and Ca2+ release from intracellular stores, such as vacuole and endoplasmic reticulum. This study aimed to determine the physiological mechanisms underlying Ca2+ release from vacuoles and its role in ionic homeostasis in Populus euphratica. In vivo Ca2+ imaging showed that NaCl treatment induced a rapid elevation in [Ca2+]cyt, which was accompanied by a subsequent release of vacuolar Ca2+. In cell cultures, NaCl-altered intracellular Ca2+ mobilization was abolished by antagonists of inositol (1, 4, 5) trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPR) signaling pathways, but not by slow vacuolar (SV) channel blockers. Furthermore, the NaCl-induced vacuolar Ca2+ release was dependent on extracellular ATP, extracellular Ca2+ influx, H2O2, and NO. In vitro Ca2+ flux recordings confirmed that IP3, cADPR, and Ca2+ induced substantial Ca2+ efflux from intact vacuoles, but this vacuolar Ca2+ flux did not directly respond to ATP, H2O2, or NO. Moreover, the IP3/cADPR-mediated vacuolar Ca2+ release enhanced the expression of salt-responsive genes that regulated a wide range of cellular processes required for ion homeostasis, including cytosolic K+ maintenance, Na+ and Cl exclusion across the plasma membrane, and Na+/H+ and Cl/H+ exchanges across the vacuolar membrane.  相似文献   

3.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

4.
We have investigated the effect of 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, on carbachol-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in human neuroblastoma SH-SY5Y cells by means of single cell imaging of [Ca2+]i. SIN-1 potentiated carbachol-induced [Ca2+]i rise regardless of external Ca2+, and the potentiation was completely inhibited by superoxide dismutase, indicating that peroxynitrite may enhance Ca2+ release from intracellular stores. On the other hand, SIN-1 reduced carbachol-induced inositol 1,4,5-trisphosphate (IP3) formation. Genistein, a tyrosine kinase inhibitor, potentiated carbachol-induced rise of [Ca2+]i regardless of external Ca2+. These results suggest that peroxynitrite may potentiate the release of Ca2+ from intracellular stores through the perturbation of regulation in tyrosine phosphorylation-dephosphorylation system.  相似文献   

5.
The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore.  相似文献   

6.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

7.
This study examined [Ca2+]i oscillations in the human salivary gland cell lines, HSY and HSG. Relatively low concentrations of carbachol (CCh) induced oscillatory, and higher [CCh] induced sustained, steady-state increases in [Ca2+]i and K Ca currents in both cell types. Low IP3, but not thapsigargin (Tg), induced [Ca2+]i oscillations, whereas Tg blocked CCh-stimulated [Ca2+]i oscillations in both cell types. Unlike in HSG cells, removal of extracellular Ca2+ from HSY cells (i) did not affect CCh-stimulated [Ca2+]i oscillations or internal Ca2+ store refill, and (ii) converted high [CCh]-induced steady-state increase in [Ca2+]i into oscillations. CCh- or thapsigargin-induced Ca2+ influx was higher in HSY, than in HSG, cells. Importantly, HSY cells displayed relatively higher levels of sarcoendoplasmic reticulum Ca2+ pump (SERCA) and inositoltrisphosphate receptors (IP3Rs) than HSG cells. These data demonstrate that [Ca2+]i oscillations in both HSY and HSG cells are primarily determined by the uptake of Ca2+ from, and release of Ca2+ into, the cytosol by the SERCA and IP3R activities, respectively. In HSY cells, Ca2+ influx does not acutely contribute to this process, although it determines the steady-state increase in [Ca2+]i. In HSG cells, [Ca2+]i oscillations directly depend on Ca2+ influx; Ca2+ coming into the cell is rapidly taken up into the store and then released into the cytosol. We suggest that the differences in the mechanism of [Ca2+]i oscillations HSY and HSG cells is related to their respective abilities to recycle internal Ca2+ stores. Received: 30 October 2000/Revised: 26 February 2001  相似文献   

8.
Resting platelets maintain a stable level of low cytoplasmic calcium ([Ca2+]cyt) and high dense tubular system calcium ([Ca2+]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of [Ca2+]cyt. Another major source of [Ca2+]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as [Ca2+]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca2+-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>−70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets’ phenotypes during hemostasis or thrombosis.  相似文献   

9.
Abstract: The ability of antidepressant drugs (ADs) to increase the concentration of intracellular Ca2+ ([Ca2+]i) was examined in primary cultured neurons from rat frontal cortices using the Ca2+-sensitive fluorescent indicator fura-2. Amitriptyline, imipramine, desipramine, and mianserin elicited transient increases in [Ca2+]i in a concentration-dependent manner (100 μM to 1 mM). These four AD-induced [Ca2+]i increases were not altered by the absence of external Ca2+ or by the presence of La3+ (30 μM), suggesting that these ADs provoked intracellular Ca2+ mobilization rather than Ca2+ influx. All four ADs increased inositol 1,4,5-trisphosphate (IP3) contents by 20–60% in the cultured cells. The potency of the IP3 production by these ADs closely correlated with the AD-induced [Ca2+]i responses. Pretreatment with neomycin, an inhibitor of IP3 generation, significantly inhibited amitriptyline- and imipramine-induced [Ca2+]i increases. In addition, by initially perfusing with bradykinin (10 μM) or acetylcholine (10 μM), which can stimulate the IP3 generation and mobilize the intracellular Ca2+, the amitriptyline responses were decreased by 76% and 69%, respectively. The amitriptyline-induced [Ca2+]i increases were unaffected by treatment with pertussis toxin. We conclude that high concentrations of amitriptyline and three other ADs mobilize Ca2+ from IP3-sensitive Ca2+ stores and that the responses are pertussis toxin-insensitive. However, it seems unlikely that the effects requiring high concentrations of ADs are related to the therapeutic action.  相似文献   

10.
The source, time course and stoichiometry of cytosolic free Ca2+ ([Ca2+]i) during contraction were examined in smooth muscle cells isolated from the guinea pig and human stomach. Contraction by receptor-linked agonists (eg, acetylcholine, cholecystokinin octapeptide and Met-enkephalin) was preceded by stoichiometric increases in [Ca2+]i and net 45Ca2+ efflux that were maintained in the absence of extracellular Ca2+ or in the presence of a Ca2+ channel blocker (13600). The intracellular Ca2+ store could be depleted by repeated stimulation with all agonists in Ca2+-free medium or in the presence of 13600 resulting in loss of contractile response; response was restored by re-exposure of the cells to Ca2+.The source of intracellular Ca2+ an the signal for its release were examined in saponin-permeabilized muscle cells. The cells retained their ability to contract in response to receptor-linked agonists and developed an ability to contract in response to inositol trisphosphate (IP3). The cells accumulated Ca2+ to the same extent as intact muscle cells, but only in the presence of ATP. IP3 caused a prompt, concentration-dependent increase in contraction, [Ca2+]i and net 45Ca2+ efflux. These effects were maximally similar to those produced by CCK-8 alone or in combination with IP3: Depletion of the Ca2+ store by repeated stimulation of single muscle cells in Ca2+-free medium with IP3, acetylcholine or CCK-8 separately resulted in loss of contractile response to all three agents; the response was restored by re-exposure of the muscle cell to a cytosol-like perfusate (Ca2+ 180 nM).The studies demonstrate that a product of membrane phosphoinositide hydrolysis is capable of mobilizing Ca2+ from a depletable, non-mitochondrial intracellular store that is utilized by receptor-linked agonists. The magnitude of IP3-induced Ca2+ release is correlated with contraction.  相似文献   

11.
How Ca2+ oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca2+ oscillations report signal strength via frequency, whereas Ca2+ spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca2+ release, but, in contrast to hormones, Ca2+ spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca2+, and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca2+ did not perturb Ca2+ oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca2+ influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca2+ oscillations but had no effect on Ca2+ increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca2+ spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca2+ oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca2+ oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca2+ wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca2+ responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca2+ release and wave velocity.  相似文献   

12.
The effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ release in the transformed murine mast cells, mastocytoma P-815 cells permeabilized with digitonin was studied. Ca2+ was sequestered by intracellular organelles in the presence of ATP until the medium free Ca2+ concentration was lowered to a new steady-state level. The subsequent addition of IP3 caused a rapid Ca2+ release, which was followed by a slow re-uptake of Ca2+. Fifty percent of the sequestered Ca2+ was released by 10 μM IP3. Maximal Ca2+ release occurred at 10 μM and half maximal activity was at 1.3 μM. These results indicate that IP3 may function as a messenger of intracellular Ca2+ mobilization in mastocytoma cells.  相似文献   

13.
The initiation of normal embryo development depends on the completion of all events of egg activation. In all species to date, egg activation requires an increase(s) in the intracellular concentration of calcium ([Ca2+]i), which is almost entirely mediated by inositol 1,4,5‐trisphosphate receptor 1 (IP3R1). In mammalian eggs, fertilization‐induced [Ca2+]i responses exhibit a periodic pattern that are called [Ca2+]i oscillations. These [Ca2+]i oscillations are robust at the beginning of fertilization, which occurs at the second metaphase of meiosis, but wane as zygotes approach the pronuclear stage, time after which in the mouse oscillations cease altogether. Underlying this change in frequency are cellular and biochemical changes associated with egg activation, including degradation of IP3R1, progression through the cell cycle, and reorganization of intracellular organelles. In this study, we investigated the system requirements for IP3R1 degradation and examined the impact of the IP3R1 levels on the pattern of [Ca2+]i oscillations. Using microinjection of IP3 and of its analogs and conditions that prevent the development of [Ca2+]i oscillations, we show that IP3R1 degradation requires uniform and persistently elevated levels of IP3. We also established that progressive degradation of the IP3R1 results in [Ca2+]i oscillations with diminished periodicity while a near complete depletion of IP3R1s precludes the initiation of [Ca2+]i oscillations. These results provide insights into the mechanism involved in the generation of [Ca2+]i oscillations in mouse eggs. J. Cell. Physiol. 222:238–247, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

15.
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release from the ER that was highly dependent on [Ca2+]ER and sensitized by low concentrations of caffeine. Caffeine-induced Ca2+ release was quantal in nature due to modulation by [Ca2+]ER. Whereas caffeine released essentially all the Ca2+ from the ER, inositol 1,4,5-trisphosphate (InsP3)- producing agonists released only 60–80%. Both InsP3 and caffeine emptied completely the ER in digitonin-permeabilized cells whereas cyclic ADP-ribose had no effect. Ryanodine induced permanent emptying of the Ca2+ stores in a use-dependent manner after activation by caffeine. Fast confocal [Ca2+]c measurements showed that the wave of [Ca2+]c induced by 100-ms depolarizing pulses in voltage-clamped cells was delayed and reduced in intensity in ryanodine-treated cells. Our results indicate that the ER of chromaffin cells behaves mostly as a single homogeneous thapsigargin-sensitive Ca2+ pool that can release Ca2+ both via InsP3 receptors or CICR.  相似文献   

16.
Background information. The IP3R (inositol 1,4,5‐trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca2+ release in virtually all cell types. We have previously demonstrated that caspase‐3‐mediated cleavage of IP3R1 during cell death generates a C‐terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP3R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. Results. In the present study, we demonstrate that expression of the caspase‐3‐cleaved C‐terminus of IP3R1 increased the rate of thapsigargin‐mediated Ca2+ leak and decreased the rate of Ca2+ uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca2+ stores. We detected the truncated IP3R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP3R1 blocked sperm factor‐induced Ca2+ oscillations and induced an apoptotic phenotype. Conclusions. In the present study, we show that caspase‐3‐mediated truncation of IP3R1 enhanced the Ca2+ leak from the ER. We suggest a model in which, in normal conditions, the increased Ca2+ leak is largely compensated by enhanced Ca2+‐uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca2+ leak acts as a feed‐forward mechanism to divert the cell into apoptosis.  相似文献   

17.
Changes in the intracellular calcium concentration ([Ca2+]i) convey signals that are essential to the life and death of neurons. Ca2+-induced Ca2+-release (CICR), a process in which a modest elevation in [Ca2+]i is amplified by a secondary release of Ca2+ from stores within the cell, plays a prominent role in shaping neuronal [Ca2+]i signals. When CICR becomes regenerative, an explosive increase in [Ca2+]i generates a Ca2+ wave that spreads throughout the cell. A discrete threshold controls activation of this all-or-none behavior and cellular context adjusts the threshold. Thus, the store acts as a switch that determines whether a given pattern of electrical activity will produce a local or global Ca2+ signal. This gatekeeper function seems to control some forms of Ca2+-triggered plasticity in neurons. BioEssays 21:743–750, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

18.
We have studied arginine vasopressin (AVP)-, thapsigargin- and inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release in renal epithelial LLC-PK1 cells. AVP-induced changes in the intracellular free calcium concentration ([Ca2+]i) were studied in indo-1 loaded single cells by confocal laser cytometry. AVP-mediated Ca2+ mobilization was also observed in the absence of extracellular Ca2+, but was completely abolished after depletion of the intracellular Ca2+ stores by 2 μM thapsigargin. Using 45Ca2+ fluxes in saponin-permeabilized cell monolayers, we have analysed how InsP3 affected the Ca2+ content of nonmitochondrial Ca2+ pools in different loading and release conditions. Less than 10% of the Ca2+ was taken up in a thapsigargin-insensitive pool when loading was performed in a medium containing 0.1 μM Ca2+. The thapsigargin-insensitive compartment amounted to 35% in the presence of 110 μM Ca2+, but Ca2+ sequestered in this pool could not be released by InsP3. The thapsigargin-sensitive Ca2+ pool, in contrast, was nearly completely InsP3 sensitive. A submaximal [InsP3], however, released only a fraction of the sequestered Ca2+. This fraction was dependent on the cytosolic as well as on the luminal [Ca2+]. The cytosolic free [Ca2+] affected the InsP3-induced Ca2+ release in a biphasic way. Maximal sensitivity toward InsP3 was found at a free cytosolic [Ca2+] between 0.1 and 0.5 μM, whereas higher cytosolic [Ca2+] decreased the InsP3 sensitivity. Other divalent cations or La3+ did not provoke similar inhibitory effects on InsP3-induced Ca2+ release. The luminal free [Ca2+] was manipulated by varying the time of incubation of Ca2+ -loaded cells in an EGTA-containing medium. Reduction of the Ca2+ content to one-third of its initial value resulted in a fivefold decrease in the InsP3 sensitivity of the Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 –loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5–10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.  相似文献   

20.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号