首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Parathyroid hormone (PTH) is involved in regulation of the calcium level in blood and has an influence on bone metabolism, thus playing a role in osteoporosis therapy. In this study, the structures of the human PTH fragments (1-34) and (1-39) as well as bovine PTH(1-37) in aqueous buffer solution under near physiological conditions were determined using two-dimensional nuclear magnetic resonance spectroscopy. The overall structure of the first 34 amino acids of these three peptides is virtually identical, exhibiting a short NH(2)-terminal and a longer COOH-terminal helix as well as a defined loop region from His14 to Ser17, stabilized by hydrophobic interactions. bPTH(1-37), which has a higher biological activity, shows a better-defined NH(2)-terminal part. In contrast to NH(2)-terminal truncations, which cause destabilization of helical structure, neither COOH-terminal truncation nor elongation significantly influences the secondary structure. Furthermore, we investigated the structure of hPTH(1-34) in 20% trifluoroethanol solution. In addition to its helix-stabilizing effect, trifluorethanol causes the loss of tertiary hydrophobic interactions.  相似文献   

2.
A stable recombinant chinese hamster ovary (CHO) cell model system expressing the human type-1 receptor for parathyroid hormone and parathyroid hormone-related peptide (hPTH-R) was established for the analysis of human PTH (hPTH) variants. The cell lines showed receptor expression in the range from 10(5) to I.9 x 10(6) receptors per cell. The affinity of the receptors for hPTH-(1-34) was independent of the receptor number per cell (Kd approximately = 8 nmol/1). The induction of cAMP by hPTH-(1-34) is maximal in clones expressing >2x10(5) receptors per cell and Ca++ signals were maximal in cell lines expressing >1.4x10(6) receptors per cell. Second messenger specific inhibitors demonstrated that PTH-induced increases in intracellular cAMP and Ca++ are independent and Ca++ ions are derived from intracellular stores. The cAMP-specific receptor activator hPTH-(1-31) showed also an increase in intracellular Ca++. Even in cell lines expressing more than 10(6) receptors per cell the Ca++/PKC specific activator hPTH-(28-48) did not activate hPTH-Rs. Based on these results, synthesis of further derivatives of PTH is required to identify pathway-specific ligands for the type-1 hPTH-R.  相似文献   

3.
In rodent osteoporosis models such as ovariectomized (OVX) rats, intermittently administered human parathyroid hormone (hPTH) has an anabolic effect in vertebrae and long bones. In the present experiments, subcutaneously injected hPTH(1 - 34) or hPTH(1 - 84) dose- and time-dependently increased bone mineral density (BMD) as measured by dual energy X-ray absorptiometry in mandibles, L2 to L4 vertebrae and femurs of such rats. The highest dose (15.9 nmol/kg, s. c.) of either peptide given four times weekly for 10 weeks completely reversed the effects of overiectomy on BMD. Significant elevation in lumbar BMD after 10 weeks was observed with hPTH(1 - 34) or hPTH(1 - 84) at 1.1 nmol/kg, whereas hPTH(1 - 34) at 1.1 and 4.2 nmol/kg significantly increased BMD of the whole bone and the metaphysis of the femur and the diaphysis of the bone, respectively. In contrast, significant effects of hPTH(1 - 84) administration on BMD increase in the femur were observed at 4.2 and 15.9 nmol/kg in the whole bone and the metaphysis, and in the diaphysis, respectively. Maxillary molar extraction left mandibular BMD in rats with intact ovaries unchanged, but significantly decreased mandibular BMD in OVX rats. Administration of hPTH(1 - 84) for 10 weeks in OVX rats without or with extraction significantly increased BMD in the mandibular molar region at doses of 15.9 and 4.2 nmol/kg, respectively, indicating that efficacy was increased by extraction. A significant BMD increase in the molar region in OVX rats with extraction occurred at only 1.1 nmol/kg of hPTH(1 - 34) and 4.2 nmol/kg of hPTH(1 - 84). Also, BMD of the ramus region was increased by administration of both peptides to a lesser extent than that of the molar region in these rats. Thus, intermittent administration of hPTH, especially hPTH(1 - 34), has an anabolic effect on bone, particularly alveolar bone. Such treatment may increase alveolar bone mass in postmenopausal women with osteoporosis.  相似文献   

4.
S C Lee  A F Russell 《Biopolymers》1989,28(6):1115-1127
The complete assignment of resonances in the proton nmr spectrum of the 1-34 amino acid fragment of human parathyroid hormone [hPTH(1-34)], determined using a combination of one- and two-dimensional nmr techniques at 500 MHz, is described. In particular, homonuclear Hartmann-Hahn experiments, recorded in H2O and D2O, are used to resolve ambiguities in the connectivities between the highly overlapped resonances in the aliphatic region of the spectrum. One-dimensional multiple quantum filtering experiments are used to identify serine and phenylalanine spin systems. Analyses of the through-bond and through-space connectivities in the alpha H-NH fingerprint regions of the correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) spectra lead to the assignment of resonances to specific amino acid residues in the polypeptide. Examination of the observed NOE cross peaks indicates that hPTH(1-34) has no detectable secondary structural elements in aqueous solution.  相似文献   

5.
Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution   总被引:4,自引:0,他引:4  
The N-terminal fragment 1-34 of parathyroid hormone (PTH), administered intermittently, results in increased bone formation in patients with osteoporosis. PTH and a related molecule, parathyroid hormone-related peptide (PTHrP), act on cells via a common PTH/PTHrP receptor. To define more precisely the ligand-receptor interactions, we have crystallized human PTH (hPTH)-(1-34) and determined the structure to 0.9-A resolution. hPTH-(1-34) crystallizes as a slightly bent, long helical dimer. Analysis reveals that the extended helical conformation of hPTH-(1-34) is the likely bioactive conformation. We have developed molecular models for the interaction of hPTH-(1-34) and hPTHrP-(1-34) with the PTH/PTHrP receptor. A receptor binding pocket for the N terminus of hPTH-(1-34) and a hydrophobic interface with the receptor for the C terminus of hPTH-(1-34) are proposed.  相似文献   

6.
7.
8.
A recombinant human parathyroid hormone (rhPTH) fragment (Gly1-Gln26-rhPTH(1-34)) which contains two amino acids substitutions (Gly1 and Gln26) was acquired through Escherichia coli expression system using a soluble fusion protein strategy. The soluble fusion protein MBP-Gly1-Gln26-rhPTH(1-34) was harvested after purification by Phenyl-Sepharose F.F and Q-Sepharose F.F chromatographies. Following tobacco etch virus (TEV) protease cleavage and further purification by SP-Sepharose F.F chromatography, 30.8 mg/L Gly1-Gln26-rhPTH(1-34) without tag was obtained with high purity up to 99%. Cyclic AMP (cAMP) stimulation assay suggested that Gly1-Gln26-rhPTH(1-34) could increase the biological activity by up to 13.89% and 6.34%. After daily subcutaneous injection (for 13 weeks) of 5, 10 and 20 microg of Gly1-Gln26-rhPTH(1-34)/1000g body weight, the mean Bone Material Density (BMD) of ovariectomized (OVXed) rats increased to 7.95-30.54% and 1.98-23.32%, compared to control-vehicle group (OVX, P<0.001) and sham- operated group (SHAM, P<0.01), respectively.  相似文献   

9.
Sequential subcutaneous PTH injection therapy (repeated 14 days of PTH administration and a subsequent treatment pause for a few weeks) is known to increase bone mineral density in patients with osteopenic disorders. Alternative methods of drug delivery may be beneficial in increasing compliance. A pilot study was performed in 10 healthy volunteers (4 female/6-male, age: 25.6 +/- 3.5 years, BMI: 22.3 +/- 2.4 kg/m 2, mean +/- SD) to assess the pharmacokinetic profiles of 1600 IU of PTH(1 - 34) using the pulmonary Technosphere drug delivery system in comparison to a subcutaneous injection of 400 IU. The treatments were administered in the morning after an overnight fast and blood samples for measurement of PTH(1 - 34), PTH(1 - 84), and calcium and calcitonin were taken over a period of 6 hours. Both injection and pulmonary application of PTH(1 - 34) were well tolerated. After pulmonary administration of Technosphere/PTH(1 - 34), PTH(1 - 34) appeared in the serum with a faster concentration increase (T max: pulmonary 10 +/- 5 min vs. subcutaneous 28 +/- 8 min, p < 0.001) and with higher maximal concentrations (C max : pulmonary 309 +/- 215 pmol/l vs. subcutaneous 102 +/- 45 pmol/l, p < 0.05) as compared to the subcutaneous injection. The relative bioavailability of pulmonary Technosphere/PTH(1 - 34) was calculated to be 48 %. No differences were seen between pulmonary and subcutaneous application with regard to the PTH(1 - 84), calcitonin and calcium concentrations. In conclusion, pulmonary application of Technosphere/PTH(1 - 34) appears to be an effective and thus attractive candidate for PTH substitution therapy in osteoporosis and other conditions leading to a decrease in bone mineral density.  相似文献   

10.
The structure of human parathyroid hormone fragment (1-34) in a solvent mixture of water and trifluoroethanol has been determined by 1H nuclear magnetic resonance spectroscopy and a combination of distance geometry and molecular dynamic simulations. After complete assignment of the 1H signals, the nuclear Overhauser enhancement data imply the existence of two alpha-helices, comprising residues 3-9 and 17-28, joined by a nonstructured region. The absence of any long-range NOEs and the relative magnitudes of the sequential NOEs and the 3J(HNH alpha) values reflect an inherent flexibility within the entire fragment. The final structures refined by molecular dynamics further support the above results and allow discussion of structural-activity relationships.  相似文献   

11.
Iwata T  Uchida S  Hori M  Sakai K  Towatari T  Kido H 《Life sciences》1999,65(17):1725-1732
The kidney is the major target of parathyroid hormone (PTH), and PTH influences the urinary excretion of calcium, phosphate and hydrogen ions. It was previously reported that the urinary, excretion of N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, transiently increases after human PTH (hPTH) (1-34) infusion in normal subjects and idiopathic hypoparathyroidism patients, but not in pseudohypoparathyroidism type I patients. Here we report that intravenous infusion of hPTH(1-34) to rats transiently increased the urinary excretion of various lysosomal enzymes, such as beta-glucuronidase and acid phosphatase as well as NAG. However, it did not affect the urinary excretion of tubular brush border membrane enzymes, i.e. alkaline phosphatase, leucine aminopeptidase and gamma-glutamyl transpeptidase. Human PTH(1-34) dose-dependently increased the urinary excretion of NAG in rats with a peak at 30 min, which returned to a baseline within 60 min. The increase in the urinary NAG excretion caused by hPTH(1-34) positively correlated with the increase in the urinary cAMP excretion (r = 0.844, p < 0.01), and infusion of dibutyryl cAMP at a dose of 20 mg/kg similarly increased the urinary excretion of NAG. These results suggested that the increase in the urinary excretion of lysosomal enzymes caused by hPTH(1-34) may be a functional response to hPTH(1-34) occurring in the renal tubules via PTH signaling pathway.  相似文献   

12.
Synthetic bovine parathyroid hormone (1-34) [bPTH(1-34)] has been treated with hydrogen peroxide and assayed for the effect of such treatment on the ability of bPTH(1-34) to activate medullary bone osteoclasts during their quiescent period in the early phase of the ovulatory cycle in Japanese quail. In addition, the same batches of oxidized and unoxidized bPTH(1-34) were assayed for their hypercalcemic activity in Japanese quail and their capacity to stimulate renal adenylate cyclase activity in the same species. Three groups, each consisting of five 5-month-old egg-laying Japanese quail (Coturnix coturnix japonica), were used. Between 4 to 5 hr after oviposition the three groups were injected intraperitoneally with acid saline (control) solution, bPTH(1-34) at 40 micrograms/bird, or oxidized bPTH(1-34) at 40 micrograms/bird, respectively. Twenty minutes after injection, the femoral bones were removed, split, fixed, and appropriately processed for examination by electron microscopy. Both oxidized and unoxidized bPTH(1-34) stimulated the development of osteoclast ruffled borders within 20 min after injection of the hormone preparations. As anticipated from previously published work from this laboratory, oxidized bPTH(1-34) retained its hypercalcemic activity and lost its capacity to stimulate renal adenylate cyclase activity in the Japanese quail. These results support, but do not prove, the contention that bPTH(1-34) exhibits its responses in the Japanese quail through the mediation of more than one type of receptor.  相似文献   

13.
14.
15.
Parathyroid hormone-related protein plays a major role in the pathogenesis of humoral hypercalcemia of malignancy. Under normal physiological conditions, parathyroid hormone-related protein is produced in a wide variety of tissues and acts in an autocrine or paracrine fashion. Parathyroid hormone-related protein and parathyroid hormone bind to and activate the same G-protein-coupled receptor. Here we present the structure of the biologically active NH2-terminal domain of human parathyroid hormone-related protein(1-34) in near-physiological solution in the absence of crowding reagents as determined by two-dimensional proton magnetic resonance spectroscopy. An improved strategy for structure calculation revealed the presence of two helices, His-5-Leu-8 and Gln-16-Leu-27, connected by a flexible linker. The parathyroid hormone-related protein(1-34) structure and the structure of human parathyroid hormone(1-37) as well as human parathyroid hormone(1-34) are highly similar, except for the well defined turn, His-14-Ser-17, present in parathyroid hormone. Thus, the similarity of the binding affinities of parathyroid hormone and parathyroid hormone-related protein to their common receptor may be based on their structural similarity.  相似文献   

16.
17.
Shi X  Wang C  Zhuang Z  Lu J  Liu J  Wu J  Cao R  Li T 《Regulatory peptides》2011,170(1-3):52-56
Synthetic human parathyroid (1-34) (hPTH (1-34)) is known to have the full biological activity of the holohormone for osteoporosis. This study is about designing a novel analog of hPTH (1-34) which is more suitable for intranasal administration. We likewise evaluate effectiveness of the nasal drops against osteoroporosis. Through fusion expression of combining gene, cell disruption, inclusion body washing, ethanol fraction precipitation, acid hydrolysis, and CM-52 ion exchange column chromatography Pro-Pro-[Arg11] hPTH (1-34)-Pro-Pro was designed and produced. Nasal drops of Pro-Pro-[Arg11] hPTH (1-34)-Pro-Pro were prepared and administrated to ovariectomized rats. After 12 weeks of raising, Bone Material Densities (BMD) of vertebrae were examined by Dual Energy X-Ray Absorptiometry (DEXA). The average BMD of these groups treated with nasal drops of the peptide were 28.0%-47.2% (P<0.01) higher than that of the group treated with normal saline (NS). The subchondral bone plates of the femoral heads were examined by scanning electron microscopy and a defined planar section was photographed. Percentage of the area of the cancellous bone was calculated. Percentages of the groups treated with nasal drops of the peptide increased; values were significantly different to that of the group treated with NS (P<0.001) and were even equivalent to that of normal groups. These results show that nasal drops of Pro-Pro-[Arg11] hPTH (1-34)-Pro-Pro are effective against osteoporosis.  相似文献   

18.
The N-terminal 1-34 fragment of parathyroid hormone (PTH) elicits the full spectrum of bone-related biological activities of the intact native sequences. It has been suggested that the structural elements essential for bioactivity are two helical segments located at the N-terminal and C-terminal sequences, connected by hinges or flexible points around positions 12 and 19. In order to assess the relevance of the local conformation around Gly(18) upon biological function, we synthesized and characterized the following human (h) PTH(1-34) analogues containing beta-amino acid residues: [analogues: see text]. Biological activity and binding affinity of analogue I are one order of magnitude lower than those of the parent compound. In analogue II, both binding affinity and biological activity are partially recovered. Analogues III and V have no binding affinity and very low biological activity. Both bioactivity and binding affinity are partially recovered in analogue IV. The conformational properties of the analogues in aqueous solution containing dodecylphosphocholine micelles were studied by CD, 2D-nuclear magnetic resonance and molecular dynamics calculations. The results confirmed the presence in all analogues of two helical segments located at the N-terminal and C-terminal sequences. The insertion of beta-amino acid residues around position 18 does not cause appreciable conformational differences in the five analogues. The differences in biological activity and binding affinity among the five analogues cannot be related to structural differences in the membrane mimetic environment reported in this study. Our results stress the importance of the side-chain functionalities in the sequence 17-19 for biological function.  相似文献   

19.
A recombinant human parathyroid hormone fragment, Pro-Pro-hPTH(1-34), with molecular weight of 4311.46 was acquired through gene engineering. It was then isolated and purified. The homogeneity of this fragment was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), high performance liquid chromatography(HPLC), isoelectronic focusing (IEF) electrophoresis and mass spectrometry(MS) methods. Its isoelectric point is 8.0 which was determined by IEF. It was found that the hormone fragment significantly induced calcium increment as compared to the control group (P<0.001) in Parsons's Chicken Assay, an established bioassay for the evaluation of the PTH effect. After the 3-month-old ovariectomized (OVXed) rats, the OVXed rat is one of the two models required by the U.S. Food and Drug Administration for the preclinical assessment of drugs for treating osteoporosis [DeLuca PP, Dani BA. Skeletal effects of parathyroid hormone (1-34) in ovariectomized rats with or without concurrent administration of salmon calcitonin. Am Assoc Pharm Sci 2001;3(4):E27 [1]]. Sprague-Dawley rats were fed for 14 weeks, daily subcutaneous injections of Pro-Pro-hPTH(1-34) for 16 weeks (0.4, 0.6 or 0.9 nmol/100 g body weight), reduced the ovariectomy (OVX)-triggered mass loss of vertebral trabecular bone. The mean Bone Material Density (BMD) increased to 29.2-34.5% in 3-month-old OVXed rats compared to control-vehicle group (P<0.001) and increased to 17.5-22.3% compared to sham-operated groups (P<0.01). In short, A recombinant Pro-Pro-hPTH(1-34) was harvested in purified form and its physico-chemical characterization was determined. It showed significantly enhanced activity upon two typical models for PTH fragments. It can increase the mineral density of vertebral trabecular bone just as synthetic hPTH(1-34), and the functional activity of Pro-Pro-hPTH(1-34) should be due to the removing of Pro-Pro- by Dipeptidyl peptidase IV (DPPIV). This study opened out a simplified method which was cheaper, faster than the conventional one for producing active hPTH fragment, and its applied prospect would be good; Furthermore, it may open up our own path in finding new methods for post-processing of gene-engineering product.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号