首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster's cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

2.
Vibrio vulnificus infections are associated with raw oyster consumption, and disease reservoirs are determined by the ability of this bacterium to infect and persist in oysters. Surface structures, such as capsular polysaccharide (CPS), pili and flagella, function as virulence factors in mouse infection models. Furthermore, virulence is related to phase variation in colony morphology, which reflects CPS expression and includes opaque (encapsulated, virulent), translucent (reduced encapsulation, avirulent) and rugose (wrinkled, biofilm-enhanced) colony types. The role of these factors in environmental survival is unknown; therefore, mutational analysis and phase variation of V. vulnificus were examined in an oyster infection model. Oysters ( Crassostrea virginica ) were pre-treated with tetracycline to reduce background bacteria and subsequently inoculated via filter feeding with 106 colony-forming units (cfu) ml−1 of V. vulnificus wild-type strains and phase variants, as well as strains with deletion mutations in genes related to CPS (Δ wza ), pili (Δ pilA ), flagella (Δ flaCDE/ Δ flaFBA ) and motility (Δ motAB ). All mutants were significantly reduced in their dissemination to oyster haemolymph as compared with wild type; however, recovery of mutants from gills and intestinal tissue was generally similar to wild type. Translucent and rugose inocula showed induction of high-frequency phase variation to the opaque encapsulated phenotype (100% and 72% respectively) during oyster infections that did not occur in strains recovered from seawater. Thus, multiple bacterial factors determine uptake of V. vulnificus in oysters, and phase variation during oyster infection is a likely mechanism for environmental survival and for induction of the more virulent phenotype.  相似文献   

3.
Certain indigenous estuarine bacteria, such as Vibrio vulnificus, may cause opportunistic human infections after consumption of raw oysters or exposure of tissues to seawater. V. vulnificus is known to be closely associated with oyster (Crassostrea virginica) tissues and is not removed by controlled purification methods, such as UV light-assisted depuration. In fact, when live shellfish are subjected to controlled purification, the number of V. vulnificus cells can markedly increase. A review of previous studies showed that few workers have examined mechanisms in oysters which may influence the persistence of V. vulnificus in shellfish, such as the fate of V. vulnificus following phagocytosis by molluscan hemocytes. The objectives of this study were to define the intracellular viability and extracellular viability of V. vulnificus during the phagocytic process and to study the release of specific lysosomal enzymes. The viability of a virulent estuarine V. vulnificus isolate with opaque morphology was compared with the viability of a translucent, nonvirulent form, the viability of Vibrio cholerae, and the viability of Escherichia coli in phagocytosis experiments. Our results showed that the levels of phagocytosis and bactericidal degradation of the opaque V. vulnificus isolate were less than the levels of phagocytosis and bactericial degradation of the translucent morphotype. These findings indicate that encapsulation may contribute to resistance to ingestion and degradation by hemocytes. The rates of intracellular death of V. cholerae and E. coli exceeded the rate of intracellular death of the opaque V. vulnificus isolate, even though the ingestion or uptake rates did not differ significantly. The levels of lysozyme activity and acid phosphatase activity were not significantly different in hemocyte monolayers inoculated with V. vulnificus.  相似文献   

4.
Commonly found in raw oysters, Vibrio vulnificus poses a serious health threat to immunocompromised individuals and those with serum iron overload, with a fatality rate of approximately 50%. An essential virulence factor is its capsular polysaccharide (CPS), which is responsible for a significant increase in virulence compared to nonencapsulated strains. However, this bacterium is known to vary the amount of CPS expressed on the cell surface, converting from an opaque (Op) colony phenotype to a translucent (Tr) colony phenotype. In this study, the consistency of CPS conversion was determined for four strains of V. vulnificus. Environmental conditions including variations in aeration, temperature, incubation time, oxidative stress, and media (heart infusion or modified maintenance medium agar) were investigated to determine their influence on CPS conversion. All conditions, with the exception of variations in media and oxidative stress, significantly affected the conversion of the population, with high ranges of CPS expression found even within cells from a single colony. The global quorum-sensing regulators RpoS and AI-2 were also examined. While RpoS was found to significantly mediate phenotypic conversion, quorum sensing was not. Finally, 12 strains that comprise the recently found clinical (C) and environmental (E) genotypes of V. vulnificus were examined to determine their rates of population conversion. C-genotype strains, which are most often associated with infection, had a significantly lower rate of population conversion from Op to Tr phenotypes than did E-genotype strains (ca. 38% versus ca. 14%, respectively). Biofilm capabilities of these strains, however, were not correlated with increased population conversion.  相似文献   

5.
6.
C M Kim  K C Jeong  J H Rhee    S H Choi 《Applied microbiology》1997,63(8):3308-3310
Thermal-death times were determined for Vibrio vulnificus strains with different morphotypes. Opaque strains showed higher D values (times required to reduce the viable population of a given strain by 90%) than translucent strains. Z values (absolute values of the temperature required to reduce 1 log scale of D values) were also significantly higher in opaque morphotypes (2.4 to 2.5 degrees C) than in translucent ones (1.7 to 2.1 degrees C). These results indicate that the morphotype is related to the organism's susceptibility to heat.  相似文献   

7.
K F Bahrani  J D Oliver 《Microbios》1991,66(267):83-93
Lipopolysaccharides (LPS) from an opaque and a translucent colony variant of Vibrio vulnificus were isolated by several methods and the electrophoretic profiles were analysed. The phenol-water extraction method provided a better yield compared to the phenol-chloroform-petroleum ether method. In addition, two rapid micro-assays were used to isolate LPS for electrophoretic analysis. The electrophoretic pattern was the same for all LPS extracts and was similar in both variants. No high molecular weight bands, characteristic of smooth LPS, were detected in the LPS of this organism. This was in contrast to the smooth nature of the LPS of another member of the Vibrionaceae examined, V. cholerae. The result of this study showed no correlation between LPS and colony morphology in V. vulnificus.  相似文献   

8.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster’s cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

9.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

10.
Representative encapsulated strains of Vibrio vulnificus from market oysters and oyster-associated primary septicemia cases (25 isolates each) were tested in a blinded fashion for potential virulence markers that may distinguish strains from these two sources. These isolates were analyzed for plasmid content, for the presence of a 460-bp amplicon by randomly amplified polymorphic DNA PCR, and for virulence in subcutaneously (s.c.) inoculated, iron-dextran-treated mice. Similar percentages of market oyster and clinical isolates possessed detectable plasmids (24 and 36%, respectively), produced the 460-bp amplicon (45 and 50%, respectively), and were judged to be virulent in the mouse s.c. inoculation-iron-dextran model (88% for each). Therefore, it appears that nearly all V. vulnificus strains in oysters are virulent and that genetic tests for plasmids and specific PCR size amplicons cannot distinguish between fully virulent and less virulent strains or between clinical and environmental isolates. The inability of these methods to distinguish food and clinical V. vulnificus isolates demonstrates the need for alternative subtyping approaches and virulence assays.  相似文献   

11.
Vibrio vulnificus produces human disease associated with raw-oyster consumption or wound infections, but fatalities are limited to persons with chronic underlying illness. Capsular polysaccharide (CPS) is required for virulence, and CPS expression correlates with opaque (Op) colonies that show "phase variation" to avirulent translucent (Tr) phenotypes with reduced CPS. The results discussed here confirmed homology of a V. vulnificus CPS locus to the group 1 CPS operon in Escherichia coli. However, two distinct V. vulnificus genotypes or alleles were associated with the operon, and they diverged at sequences encoding hypothetical proteins and also at unique, intergenic repetitive DNA elements. Phase variation was examined under conditions that promoted high-frequency transition of Op to Tr forms. Recovery of Tr isolates in these experiments showed multiple genotypes, which were designated TR1, TR2, and TR3: CPS operons of TR1 isolates were identical to the Op parent, and cells remained phase variable but expressed reduced CPS. TR2 and TR3 showed deletion mutations in one (wzb) or multiple genes, respectively, and deletion mutants were acapsular and locked in the Tr phase. Complementation in trans restored the Op phenotype in strains with the wzb deletion mutation. Allelic variation in repetitive elements determined the locations, rates, and extents of deletion mutations. Thus, different mechanisms are responsible for reversible phase variation in CPS expression versus genetic deletions in the CPS operon of V. vulnificus. Repetitive-element-mediated deletion mutations were highly conserved within the species and are likely to promote survival in estuarine environments.  相似文献   

12.
The marine bacterium Vibrio vulnificus is a human pathogen that can spontaneously switch between virulent opaque and avirulent translucent phenotypes. Here, we document an additional form, the rugose variant, which produces copious biofilms and which may contribute both to pathogenicity of V. vulnificus and to its survival under adverse environmental conditions.  相似文献   

13.
Two hundred and eighty four presumptive but not confirmed Vibrio vulnificus isolates grown on cellobiose-polymixin B-colistin agar (CPC) at 40 degrees C, recovered from sea water samples from Valencia, Spain, during a microbiological survey for V. vulnificus, were phenotypically identified. Most of the isolates (91%) corresponded to Vibrio species. V. harveyi (24%) and V. splendidus(19%) were the most abundant species identified, followed by V. navarrensis (13%), V. alginolyticus (8%) and V. parahaemolyticus (5%). The ability to grow on CPC agar and ferment cellobiose of several V. vulnificus strains from different origins and serovars, including reference strains, was tested. Most serovar E isolates and 25% of non-serovar E isolates could not grow on CPC agar.  相似文献   

14.
15.
Phospholipase activity and virulence of pathogenic leptospirae   总被引:2,自引:0,他引:2  
Results of investigation of phospholipase activity and virulence of pathogenic leptospirae on a solid nutrient medium using the method of agar layers with 1% of L-lecithin in the medium of the second layer are presented. It has been demonstrated that only one zone of translucent medium is formed around the colonies of pathological leptospirae, which is obviously due to the release of phospholipase A. The examined virulent strains of pathogenic leptospirae were found to exhibit greater phospholipase activity (width of the translucent zones being 5.0 +/- 0.34 mm) than the avirulent strains (width of the zones being 1.5 +/- 0.11 mm).  相似文献   

16.
Virulence of Vibrio vulnificus strains from marine environments   总被引:1,自引:0,他引:1  
Vibrio vulnificus strains isolated from geographically diverse marine sources were compared with clinical isolates for phenotype and in vitro and in vivo production of virulence factors. There were no differences between environmental and clinical strains on the basis of biochemical characteristics or antimicrobial susceptibility patterns. Cytolysin and cytotoxin titers produced by environmental strains were generally comparable to those of clinical strains. Of 29 environmental isolates tested, 25 were pathogenic for mice. These data show that environmental V. vulnificus strains are phenotypically indistinguishable from clinical isolates and that approximately 90% of the environmental strains tested produced in vitro virulence factors and in vivo pathogenicity for mice comparable to those produced by clinical V. vulnificus isolates.  相似文献   

17.
Virulence of Vibrio vulnificus strains from marine environments.   总被引:10,自引:7,他引:3       下载免费PDF全文
Vibrio vulnificus strains isolated from geographically diverse marine sources were compared with clinical isolates for phenotype and in vitro and in vivo production of virulence factors. There were no differences between environmental and clinical strains on the basis of biochemical characteristics or antimicrobial susceptibility patterns. Cytolysin and cytotoxin titers produced by environmental strains were generally comparable to those of clinical strains. Of 29 environmental isolates tested, 25 were pathogenic for mice. These data show that environmental V. vulnificus strains are phenotypically indistinguishable from clinical isolates and that approximately 90% of the environmental strains tested produced in vitro virulence factors and in vivo pathogenicity for mice comparable to those produced by clinical V. vulnificus isolates.  相似文献   

18.
Abstract The non-culturable state of Vibrio vulnificus , strain C7184, was studied in artificial seawater microcosms held at 5, 10, 15, 20, and 30°C. Plate counts were made on a non-selective medium, total cell counts were monitored by acridine orange epifluorescence, and direct viable counts (DVSs) by the method of Kogure et al. (Can J. Microbiol. 25, 415–420; 1986) and by the INT method. From an initial inoculum of 107 cells/ml, V. vulnificus became non-culturable within 40 days at 5°C, although both indicators of viability revealed a viable population exceeding 106 cells/ml. Cells at all higher temperatures remained culturable (at least 104/ml) throughout the study. The non-culturable states of the opaque and translucent colony variants of V. vulnificus , as well as those of six other clinical and environmental strains of V. vulnificus , were examined at 5°C; all but one strain and both colony variants also became non-culturable within 40 days. In contrast, six other Vibrio spp. ( V. cholerae, V. mimicus, V. parahaemolyticus, V. natriegens, V. proteolyticus , and V. campbelli ) remained culturable at 5°C. Thus, entrance of V. vulnificus into the non-culturable state appears to be highly temperature dependent and, among the vibrios, this species may be especially sensitive to low temperature. The public health aspects of these findings are discussed.  相似文献   

19.
Vibrio vulnificus is a Gram-negative bacterium found in estuaries and coastal waters and is associated with human disease caused by ingestion of raw shellfish. Pathogenesis is directly related to the presence of capsular polysaccharide (CPS). Encapsulated virulent strains exhibit an opaque colony phenotype, while unencapsulated attenuated strains appear translucent. A third colony type, rugose, is caused by expression of rugose extracellular polysaccharide (rEPS) and forms robust biofilms. Vibrio vulnificus undergoes phase variation associated with altered levels of CPS and rEPS, and we show here that calcium (Ca2(+) ) significantly increases the rate of CPS and rEPS phase variation in this species. Interestingly, multiple phenotypic responses to increased [Ca2(+) ] were observed among strains, which suggests the existence of underlying cognate genetic or epigenetic differences. Certain translucent isolates contained deletions at the group I CPS operon, inferring increased [Ca2(+) ] upregulates existing phase variation mechanisms. Expanding on a previous observation (Kierek and Watnick, Proc. Natl. Acad. Sci. USA 100: 14357-14362, 2003), increased [Ca2(+) ] also enhanced biofilm formation for all phase variants. Our results show that Ca2(+) promotes both polysaccharide phase variation and biofilm formation of the resulting phase variants, thereby likely serving a dual role in persistence of V. vulnificus in the environment.  相似文献   

20.
Nonmotile Vibrio vulnificus strains were isolated as pure cultures from body ulcers and internal organs of wild diseased European eels caught in a Mediterranean freshwater coastal lagoon. All 54 V. vulnificus isolates were nonmotile, indole-, ornithine decarboxilase-, mannitol- and cellobiose-positive, developed the opaque variant in culture, belonged to the O-antigenic serovar A and were highly virulent for eels by both intraperitoneal injection and immersion challenges. The nonmotile phenotype found in our V. vulnificus isolates was stable: nonmotile cells were always recovered from experimentally infected eels; no variation in the immobility of the V. vulnificus cells was observed for repeated subculture by daily passages on solid media, at different temperatures or incubation times and with or without magnesium sulfate. Many of the fla genes of Vibrio were present in the genome of the nonmotile strains (flaCDE and flaFBA for flagellins and flaH for the distal capping protein), although we observed by transmission electron microscopy that these V. vulnificus strains always lacked the polar flagellum. This is the first report on the existence of nonmotile wild-type V. vulnificus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号