首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some antibacterial and antifungal furanylmethyl-and thienylmethyl dithiolenes and, their Co(II), Cu(II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative; Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureus bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. All compounds showed significant antibacterial and antifungal activity. The metal complexes, however, were shown to possess better activity as compared to the simple ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties.  相似文献   

2.
Six new polyazole derivatives from 2-(2,4-dichlorophenyl)-1,3-dioxolane were studied for their antifungal activity against pathogenic fungi for humans and animals. The antimycotic effect was largely restricted to the filamentous fungi with Aspergillus fumigatus and Scedosporium apiospermum being remarkably susceptible. Three compounds were as effective as the two references, ketoconazole and oxiconazole. The structure-activity relationships revealed that an oxime group combined with four chlorine atoms increased the antifungal properties of the chemical series.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Candida albicans is an important human fungal pathogen. Our previous study disclosed that aryloxy-phenylpiperazine skeleton was a promising molecule to suppress C. albicans virulence by inhibiting hypha formation and biofilm formation. In order to deeply understand the efficacy and mechanism of action of phenylpiperazine compounds, and obtain new derivatives with excellent activity against C. albicans, hence, we synthesized three series of (1-heteroaryloxy-2-hydroxypropyl)-phenylpiperazines and evaluated their inhibitory activity against C. albicans both in vitro and in vivo in this study. Compared with previously reported aryloxy-phenylpiperazines, part of these heteroaryloxy derivatives improved their activities by strongly suppressing hypha formation and biofilm formation in C. albicans SC5314. Especially, (9H-carbazol-4-yl)oxy derivatives 25 , 26 , 27 and 28 exhibited strong activity in reducing C. albicans virulence in both human cell lines in vitro and mouse infection models in vivo. The compound 27 attenuated the virulence of various clinical C. albicans strains, including clinical drug-resistant C. albicans strains. Moreover, additive effects of the compound 27 with antifungal drugs against drug-resistant C. albicans strains were also discussed. Furthermore, the compound 27 significantly improved the composition and richness of the faecal microbiota in mice infected by C. albicans. These findings indicate that these piperazine compounds have great potential to be developed as new therapeutic drugs against C. albicans infection.  相似文献   

4.
In the present investigation, new chloroquinoline derivatives bearing vinyl benzylidene aniline substituents at 2nd position were synthesized and screed for biofilm inhibitory, antifungal and antibacterial activity. The result of biofilm inhibition of C. albicans suggested that compounds 5j (IC50 value?=?51.2?μM) and 5a (IC50 value?=?66.2?μM) possess promising antibiofilm inhibition when compared with the standard antifungal drug fluconazole (IC50?=?40.0?μM). Two compounds 5a (MIC?=?94.2?μg/mL) and 5f (MIC?=?98.8?μg/mL) also exhibited good antifungal activity comparable to standard drug fluconazole (MIC?=?50.0?μg/mL). The antibacterial screening against four strains of bacteria viz. E. coli, P. aeruginosa, B. subtilis, and S. aureus suggested their potential antibacterial activity and especially all the compounds except 5g were found more active than the standard drug ciprofloxacin against B. subtilis. To further gain insights into the possible mechanism of these compounds in biofilm inhibition through the agglutinin like protein (Als), molecular docking and molecular dynamics simulation studies were carried out. Molecular modeling studies suggested the clear role in inhibition of this protein and the resulting biofilm inhibitory activity.  相似文献   

5.
Seventeen compounds with either an imidazolin-2-one or a tetrahydropyrimidin-2(1H)-one scaffold were synthesized and evaluated for their immunosuppressive activity in a concanavallin A (ConA)-stimulated mouse splenocytes proliferation test. Three of these molecules exerted a significant activity at 90 μM. All the compounds of the tetrahydropyrimidin-2(1H)-one series have turned out to be inactive showing the crucial role of the imidazolidin-2-one scaffold in the induction of an immunosuppressive activity.  相似文献   

6.
A series of novel substituted 1-(4-methoxybenzyl)-3-cyclopropyl-1H-pyrazol-5-amine benzamides 9(a–h) were synthesized to determine their antibacterial and antifungal activities as well as possible structure–activity relationships (SARs) to improve therapeutic efficacy. The pyrazol-5-amine benzamides were screened for their antibacterial activity against standard strains of Gram-positive (Streptococcus pyogenes NCIM 2608, Staphylococcus aureus ATCC 29737, Bacillus subtilis NCIM 2010) and Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 20852, Klebsiella pneumoniae MTCC 618) bacteria by using streptomycin as positive control. They were also tested for their antifungal activities against mycotoxic strains of Fusarium verticillioides, Aspergillus ochraceous, Aspergillus flavus, Alternaria alternata, and Penicillium chrysogenum using nystatin as positive control. Among the synthesized compounds, 9d, 9g, and 9h showed potent antimicrobial activities.  相似文献   

7.
Synthesis, characterization and biological studies of Schiff base-derived sulfonamides and their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been reported and screened for in-vitro antibacterial activity against six Gram-negative; E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis, S. typhi and S. dysenteriae and four Gram-positive; B. cereus, C. diphtheriae, S. aureus and S. pyogenes bacterial strains and for in-vitro antifungal activity against T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glaberata. All compounds showed moderate to significant antibacterial activity, however, the zinc (II) complexes were found to be more active. Some of the compounds also showed significant antifungal activity against various fungal strains. Only compounds (6) and (10) displayed potent cytotoxic activity with LD50 = 4.644 × 10? 4 and 4.106 × 10? 4 moles/mL respectively, against Artemia salina. The X-ray structure of 4-[(2-hydroxybenzylidene)amino]benzenesulfonamide is also reported.  相似文献   

8.
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirin vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide ( S20 ) exhibited the highest antimicrobial potential. The N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S5 ) displayed good antifungal potential against Rhizopus oryzae, whereas N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S20 ) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide ( S16 ) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.  相似文献   

9.
In order to find novel potential antifungal agrochemicals, a series of new 4-(1,2,4-oxadiazol-3-yl)-N-(4-phenoxyphenyl)benzamide derivatives 3a – j were designed, synthesized and characterized by their 1H - , 13C-NMR and HRMS spectra. The preliminary antifungal assay in vitro revealed that compounds 3a – j exhibited moderate to good antifungal activity against five plant pathogenic fungi. Especially, compound 3e presented significant antifungal activity against Alternaria solani, Botrytis cinerea and Sclerotinia sclerotiorum, superior to positive control boscalid. In the in vivo antifungal assay on tomato plants and cucumber leaves, compound 3e presented good inhibition rate against B. cinerea at 200 mg/L. Molecular dynamics simulation revealed that compound 3e could bind with the active site of class II histone deacetylase (HDAC).  相似文献   

10.
A series of peptide dendrimers and their conjugates with antimicrobial agent FMDP (N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐diamino‐propanoic acid) were synthesized. The obtained compounds were tested for the antibacterial and antifungal activity. All novel dendrimers displayed much better activity against the tested strains than FMDP itself. Moreover, their conjugates with FMDP also exhibited antimicrobial activity. The most promising molecules were tested against a broad selection of fungal strains. The analysis of their antifungal properties indicates that the examined molecules are efficient growth inhibitors of fluconazole‐resistant hospital‐acquired strains. Moreover, an application of amphiphilic branched peptides such as FMDP carriers suggests that transport mechanism involves more likely the cell membrane perturbation than the mediation of the specific transport proteins. The activity of obtained compounds strongly depends on the specific structure of the molecule.  相似文献   

11.
A new series of functionalized (Z)-3-(2-oxo-2-substituted ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-ones 2326, incorporating pharmaceutically privileged substructures such as cyclopropyl, naphthyl, biphenyl and cyclohexylphenyl were synthesized in excellent yields. All the synthesized compounds were screened for their in vitro antibacterial activity against gram-(+)ve and gram-(?)ve bacterial species i.e. S. griseus, S. aureus, B. subtillis and E. coli as well as in vitro antifungal activity against fungal species i.e. F. oxysporium, A. niger, P. funiculosum and T. reesei, respectively. In this study, compounds containing cyclopropyl and cyclohexylphenyl substructures were identified as promising antimicrobial agents than standard drugs, ampicillin and chloramphenicol as well as ketoconazole. SAR study illustrates that electron-withdrawing groups increases the antibacterial as well as antifungal activity of 2-oxo-benzo[1,4]oxazines and vice versa. Compounds 23e and 26e, the most active compounds of the series, displayed promising antibacterial activity than Ampicillin and Chloramphenicol. Moreover, compound 26d showed promising antifungal potency as compared to Ketoconazole. Cytotoxic studies of the active compounds i.e. 23ce, 24e, 25d and 26de found to be non-toxic in nature in 3T3 fibroblast cell lines using MTT assay.  相似文献   

12.
In a study aiming to determine the structural elements essential to the antifungal activity of kakuol, we synthesized a series of 2‐hydroxy‐4,5‐methylenedioxyaryl ketones, and we assayed their in vitro antifungal activity. The most sensitive target organisms to the action of these class of compounds were Phytophthora infestans, Phytium ultimum, Cercospora beticola, Cladosporium cucumerinum, and Rhizoctonia solani. Most of the analogs showed a remarkable in vitro activity, and some of them appeared significantly more effective than the natural product. The biological activity was mainly affected by introducing structural modification on the carbonyl moiety of the natural‐product molecule. In particular, compound 5a , bearing a C?C bond conjugated to the C?O group, was found active with a MIC value of 10 μg ml?1 against Cladosporium cucumerinum. The results suggest that 2‐hydroxy‐4,5‐methylenedioxyaryl ketones can be considered promising candidates in the development of new antifungal compounds.  相似文献   

13.
An ideal anti-inflammatory drug should have the desired effect in minimum dose with minimum side effects. Antimicrobial actions associated with such agents will be an added advantage as they broaden the spectrum of the compounds. Promising anti-inflammatory and antimicrobial activity together with low ulcerogenic properties of some 2(3H)-furanones, synthesized in our previous study, prompted us to investigate the effect of the isobutyl group on their pharmacological profile. Since compounds 3, 9, 13, and 14 have both anti-inflammatory and analgesic effects in addition to low ulcerogenic incidence, they were selected for investigation of their inhibitory effects on various cyclo-oxygenase enzymes. It was found that they were more selective toward COX-2 enzymes. An MIC of 6.25 μg/mL was recorded for compounds 3, 13, and 14 against S. aureus, E. coli, R. oryza, and P. citrum. The study supports the development of furanone derivatives as potential anti-inflammatory agents with antimicrobial activity.  相似文献   

14.
Antibacterial and antifungal activity of 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives were examined by the disc-diffusion method (growth inhibition zone diameter in agar medium). The MIC’s for the most active agents were determined. Title compounds were also evaluated in vitro against representatives of different virus classes. Most of the tested compounds exhibit activity against CVB-2 virus.  相似文献   

15.
The antifungal activity in vitro of the newly synthesized and previously reported compounds of 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole series was evaluated. Their structures were confirmed by elemental analyses and IR, 1H and 13C NMR and mass spectra. The azole-resistant clinical isolates of Candida albicans and no-albicans Candida spp. were used in the antifungal tests. Some compounds exhibit higher activities than the comparatively studied antifungal drugs. Amino-1,3,4-thiadiazole derivatives exhibited higher (than other analogues) antifungal effects against Candida no-albicans spp. than against C. albicans. Derivatives with strong antifungal activity have a narrow range of lipophilicity values determined by the Villar approach.  相似文献   

16.
Summary A variety of 2-arylthio-N-alkylmaleimides were prepared, and their antimicrobial activities were examined. Almost all of these compounds exhibited antibacterial activity against Gram-positive bacteria such asBacillus subtilis andStaphylococcus aureus. Some compounds such as 2-(halogeno-phenyl)-thio-N-methylmaleimides (4, 5, 6, 8 and 10) and 2-(2-carbamoylphenyl)thio-N-methylmaleimide(35) exhibited antibacterial activity againstEscherichia coli. All compounds tested were inactive againstPseudomonas aeruginosa except 2-(2-carbamoylphenyl)thio-N-methylmaleimide(35) which was marginally active. Activities against Gram-positive bacteria were not due to the effect of the substituent on the benzene ring, except in the instances 2-carboxy, 2-carbomethoxy, 2-amino groups and alkyl chains, however, activities against Gram-negative bacteria were due to phenylthio and the alkyl substituents. Some of 2-arylthio-N-alkylmaleimides were examined for their antifungal activities using eight strains of fungi, and they showed activity against these.  相似文献   

17.
The extraction of natural antifungal compounds from the peels of yam (Dioscorea alata) and the effect of these compounds on both the vegetative and reproductive structures of some yam rot pathogens were studied. Four prominent antifungal components were obtained; one of the components was fully characterized and identified as β-sitosterol. The antifungal activity of the compounds toward the germination of spores of two yam pathogens showed an inhibition of less than 57% at a concentration of 50 mg/L while inhibition on the elongation of germ-tubes ofFusarium moniliforme was as high as 82% at the same concentration. However, the ED50 for inhibition of germ-tube elongation in the yam compounds for the same organism was below 32 mg/L. The role of the yam compounds at high concentrations in disease resistance is discussed.  相似文献   

18.
In search of novel natural product-based bioactive molecules, twenty (ten pairs) novel (Z)-/(E)-anisaldehyde-based oxime ester compounds were designed and synthesized by using anisaldehyde as starting material. Structural characterization of the target compounds was carried out by NMR, FT-IR, ESI-MS, and elemental analysis. Their herbicidal and antifungal activities were preliminarily tested. As a result, at 50 μg/mL, compound (E)- 5b exhibited excellent to good inhibition rates of 92.3 %, 79.2 %, and 73.9 %, against Rhizoctonia solani, Fusarium oxysporum f. sp. cucumerinum, and Bipolaris maydis, respectively, better than or comparable to that of the positive control chlorothalonil. In addition, at 100 μg/mL, compounds (E)- 5b , (E)- 5f , (Z)- 5f and (E)- 5d exhibited excellent to good inhibition rates of 85.8 %, 82.9 %, 78.6 % and 64.2 %, respectively, against the root-growth of rape (B. campestris), much better than that of the positive control flumioxazin. The bioassay result also showed that the synthesized compounds had obvious differences in antifungal and herbicidal activities between (Z)- and (E)-isomers. Preliminary structure–activity relationship was also discussed by theoretical calculation.  相似文献   

19.
A series of (E)-1-(substituted benzylidene)-4-(3-isopropylphenyl)thiosemicarbazone derivatives were synthesized and characterized by FT-IR spectrum, elemental analysis, NMR spectrum, HR-MS spectrum, and X-ray single crystal diffraction technology. The crystal structures and packing of (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone and (E)-1-(3-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone were maintained through the intramolecular hydrogen bond (N3-H6⋅⋅⋅N1) and intermolecular hydrogen bonds (N2-H4⋅⋅⋅S1, C14-H14⋅⋅⋅F1 and C7-H7⋅⋅⋅S1). The results obtained by employing the DPPH free radicals scavenging assay indicated that (E)-1-(4-methoxylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had a more significant antioxidant activity compared with other compounds. The results measured by adopting the disc diffusion method elucidated that (E)-1-(4-trifluoromethylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone possessed a more prominent antifungal activity than other compounds. Molecular docking showed that (E)-1-(4-chlorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the highest affinity with receptor protein (1NMT). Moreover, the drug-likeness characteristic, physicochemical properties, pharmacokinetic profiles, and bioactivity scores of all the compounds were predicted through in silico studies. The results illustrated that (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the drug-likeness characteristic and all the compounds were considered as moderately biological active molecules.  相似文献   

20.
This study reports the results of gas chromatography–mass spectrometry (GC–MS) analyses of the essential oil of Angelica archangelica L. (Apiaceae) roots, as well as its in vitro antifungal activity against 10 plant pathogenic fungi. Moreover, the essential oil was evaluated for its antifungal activity using the agar dilution method, and also minimum inhibitory concentrations and minimum fungicidal concentrations were determined. The major compounds identified by GC–MS were α-pinene (21.3%), δ-3-carene (16.5%), limonene (16.4%), and α-phellandrene (8.7%). The oil showed in vitro antifungal activity against some species of the Fusarium genus, Botrytis cinerea, and Alternaria solani. Our study indicates that the oil of A. archangelica could be used as a control agent for plant pathogenic fungi in natural formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号