共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The biomethane potential and biodegradability of an array of substrates with highly heterogeneous characteristics, including mono- and co-digestion samples with dairy manure, was determined using the biochemical methane potential (BMP) assay. In addition, the ability of two theoretical methods to estimate the biomethane potential of substrates and the influence of biodegradability was evaluated. The results of about 175 individual BMP assays indicate that substrates rich in lipids and easily-degradable carbohydrates yield the highest methane potential, while more recalcitrant substrates with a high lignocellulosic fraction have the lowest. Co-digestion of dairy manure with easily-degradable substrates increases the specific methane yields when compared to manure-only digestion. Additionally, biomethane potential of some co-digestion mixtures suggested synergistic activity. Evaluated theoretical methods consistently over-estimated experimentally-obtained methane yields when substrate biodegradability was not accounted. Upon correcting the results of theoretical methods with observed biodegradability data, an agreement greater than 90% was achieved. 相似文献
4.
Dinesh D. Vaishnav Eric T. Korthals 《Journal of industrial microbiology & biotechnology》1991,8(3):209-212
Summary Degradation of 10 organic chemicals by pre-acclimated microorganisms in BOD dilution water was determined directly by UV spectrophotometry and indirectly by a modified BOD method. Residual chemical concentrations were periodically measured and pseudo-first-order biodegradation rate constants (k
1) were calculated. Thek
1 spectrophotometry values ranged from 0.006/h to 0.077/h andk
1-BOD values from 0.002/h to 0.043/h for 1-methylnaphthalene and indole, respectively. The ratios ofk spectrophotometry to k1-BOD were between 1.5 for salicylic acid and 3.0 for 1-methylnaphthalene with a mean of 2.7. A significant (=0.001) linear correlation (r
2=0.854,F=46.630) existed between the two sets of rate constants. Results from this study suggest that the modified BOD method may be used to estimate chemical biodegradation rates in synthetic media. 相似文献
5.
6.
Joseph M. Suflita Susan A. Gibson Ralph E. Beeman 《Journal of industrial microbiology & biotechnology》1988,3(3):179-194
Summary Anaerobic microbial communities sampled from either a methanogenic or sulfate-reducing aquifer site have been tested for their ability to degrade a variety of groundwater pollutants, including halogenated aromatic compounds, simple alkyl phenols and tetrachloroethylene. The haloaromatic chemicals were biodegraded in methanogenic incubations but not under sulfate-reducing conditions. The primary degradative event was typically the reductive removal of the aryl halides. Complete dehalogenation of the aromatic moiety was required before substrate mineralization was observed. The lack of dehalogenation activity in sulfatereducing incubations was due, at least in part, to the high levels of sulfate rather than a lack of metabolic potential. In contrast, the degradation of cresol isomers occurred in both types of incubations but proved faster under sulfate-reducing conditions. The requisite microorganisms were enriched and the degradation pathway forp-cresol under the latter conditions involved the anaerobic oxidation of the aryl methyl group. Tetrachloroethylene was also degraded by reductive dehalogenation but under both incubation conditions. The initial conversion of this substrate to trichloroethylene was generally faster under methanogenic conditions. However, the transformation pathway slowed when dichloroethylene was produced and only trace concentrations of vinyl chloride were detected. These results illustrate that pollutant compounds can be biodegraded under anoxic conditions and a knowledge of the predominant ecological conditions is essential for accurate predictions of the transport and fate of such materials in aquifers. 相似文献
7.
Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay 总被引:1,自引:0,他引:1
Yu-Sheng Wang Caroline S. Byrd Morton A. Barlaz 《Journal of industrial microbiology & biotechnology》1994,13(3):147-153
Summary Improved techniques are needed to predict potential methane generation from refuse buried in landfills. The Biochemical Methane Potential (BMP) test was used to measure the methane potential of ten refuse samples excavated from a Berkeley, CA, landfill. The test was conducted in 125-ml serum bottles containing phosphate-buffered medium and inoculated with anaerobically digested sewage sludge. Comparison of the measured BMP to the theoretical BMP calculated from measured cellulose and hemicellulose concentrations indicated that cellulose plus hemicellulose is not well correlated with the measured BMP. The average of the measured to theoretical BMP was 19.1% (range 0–53%, s.d.=16.9%). Measured sulfate concentrations showed that sulfate was an insignificant electron sink in the samples tested. Once methane production from the refuse was complete, 0.072 g of Whatman no. 1 filter paper was added to two of the four serum bottles incubated for each sample. An average of 84.9% (s.d=2.5%) of the added filter paper was recovered as methane, suggesting that some cellulose and hemicellulose present in refuse is recalcitrant or otherwise not bioavailable. 相似文献
8.
Heinaru E Merimaa M Viggor S Lehiste M Leito I Truu J Heinaru A 《FEMS microbiology ecology》2005,51(3):363-373
Denaturing gradient gel electrophoresis of amplified fragments of genes coding for 16S rRNA and for the largest subunit of multicomponent phenol hydroxylase (LmPH) was used to monitor the behaviour and relative abundance of mixed phenol-degrading bacterial populations (Pseudomonas mendocina PC1, P. fluorescens strains PC18, PC20 and PC24) during degradation of phenolic compounds in phenolic leachate- and oil-amended microcosms. The analysis indicated that specific bacterial populations were selected in each microcosm. The naphthalene-degrading strain PC20 was the dominant degrader in oil-amended microcosms and strain PC1 in phenolic leachate microcosms. Strain PC20 was not detectable after cultivation in phenolic leachate microcosms. Mixed bacterial populations in oil-amended microcosms aggregated and formed clumps, whereas the same bacteria had a planktonic mode of growth in phenolic leachate microcosms. Colony hybridisation data with catabolic gene specific probes indicated that, in leachate microcosms, the relative proportions of bacteria having meta (PC1) and ortho (PC24) pathways for degradation of phenol and p-cresol changed alternately. The shifts in the composition of mixed population indicated that different pathways of metabolism of aromatic compounds dominated and that this process is an optimised response to the contaminants present in microcosms. 相似文献
9.
Background
There have been several methods developed for the prediction of synthetic metabolic pathways leading to the production of desired chemicals. In these approaches, novel pathways were predicted based on chemical structure changes, enzymatic information, and/or reaction mechanisms, but the approaches generating a huge number of predicted results are difficult to be applied to real experiments. Also, some of these methods focus on specific pathways, and thus are limited to expansion to the whole metabolism. 相似文献10.
The biodegradability of several potential endocrine disrupting compounds, namely 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA), triclosan (TCS), di-(2-ethylhexyl)-phthalate (DEHP), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) was evaluated in this study, using OECD method 301F (manometric respirometry test) and activated sludge as inoculum. According to the results, 4-n-NP and BPA meet the strict definition of ready biodegradability and they are not expected to be persistent during the activated sludge process. Partial biodegradation was observed for DEHP (58.7+/-5.7%, n=3), TCS (52.1+/-8.5%, n=3) and NP1EO (25.9+/-8.1%, n=3), indicating their possible biodegradation in wastewater treatment systems, while no biodegradation was observed for NP2EO, PFOA and PFNA. Experiments in the co-presence of a readily biodegradable compound showed the absence of co-metabolic phenomena during 4-n-NP, BPA and TCS biodegradation. Using first order kinetics to describe biodegradation of the target compounds, half-lives of 4.3+/-0.6, 1.3+/-0.2, 1.8+/-0.5, 6.9+/-2.6 days were calculated for 4-n-NP, BPA, TCS and DEHP, respectively. Toxicity tests using marine bacterium Vibrio fischeri showed that biodegradation of 4-n-NP, NP1EO, BPA and TCS is a simultaneous detoxification process, while possible abiotic or biotic transformations of NP2EO, DEHP, PFOA and PFNA during respirometric test resulted to significant increase of their toxicities. 相似文献
11.
Mikulášová Mária Košíková Božena Alexy Pavol Kačík František Urgelová Emília 《World journal of microbiology & biotechnology》2001,17(6):601-607
The ability of the lignin-degrading microorganism Phanerochaete chrysosporium to attack polyethylene and polypropylene was investigated using a series of polymer blends containing 10, 20 and 30% lignin obtained from the waste product of pulp and paper industry. In the cultivation medium, lignin peroxidase and Mn(II)peroxidase activities were detected. Degradation was verified by quantitative u.v. spectrophotometric analysis of the cultivation medium and by liberation of CO2 from the blends. Measurement of the tensile strength after 30-days cultivation showed that the mechanical properties of the polymer blends were decreased during the biodegradation process. The isolation of oligomer fractions by tetrahydrofuran (THF) extraction of biodegraded polymers and their characterization by gel permeation chromatography (GPC), u.v. and Fourier transmission infrared (FTIR) spectroscopy indicates that biotransformation of the lignin component during the cultivation process initiates partial biodegradation of the synthetic polymer matrix. 相似文献
12.
The objective of this publication is to present a new dynamic aerobic biodegradation test method simulating a river. A laboratory cascade test system and standardized batch shake flask tests were used for biodegradation studies with the non-volatile and non-sorbing model compounds 2,4-dinitrophenol, naphthalene-1-sulphonic acid and sulphanilic acid. To be closer to the often very low concentrations of substances in the environment the concentrations of the compounds used were standard test concentrations and lower. 14C labelled compounds were measured at 50 g/l, capillary electrophoresis at 5000 g/l and the removal of dissolved organic carbon at 50000 g/l. The test results obtained confirmed the known ultimate biodegradability of the test compounds and showed that biodegradation degrees, rates and degradation durations depended on the test systems, the concentrations of test compounds and the inocula. The river model is a suitable simulation test for natural dynamic surface waters which can be used to perform biodegradability studies at low test concentrations if adequate analytical tools, preferably radioactive-labelled substances, are available.Abbreviations BOD
biochemical oxygen demand
- DAWT
DOC-die-away test
- DNP
2,4-dinitrophenol
- DOC
dissolved organic carbon
- E
effluent of laboratory wastewater treatment plants
- MOST
modified OECD screening test
- NSA
naphthalene-1-sulphonic acid
- P
pond water
- SAA
sulphanilic acid (=4-amino benzene sulphonic acid) 相似文献
13.
Prediction of additive and dominance effects in selected or unselected populations with inbreeding 总被引:1,自引:0,他引:1
I. J. M. de Boer J. A. M. van Arendonk 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1992,84(3-4):451-459
Summary A genetic model with either 64 or 1,600 unlinked biallelic loci and complete dominance was used to study prediction of additive and dominance effects in selected or unselected populations with inbreeding. For each locus the initial frequency of the favourable allele was 0.2, 0.5, or 0.8 in different alternatives, while the initial narrow-sense heritability was fixed at 0.30. A population of size 40 (20 males and 20 females) was simulated 1,000 times for five generations. In each generation 5 males and 10 or 20 females were mated, with each mating producing four or two offspring, respectively. Breeding individuals were selected randomly, on own phenotypic performance or such yielding increased inbreeding levels in subsequent generations. A statistical model containing individual additive and dominance effects but ignoring changes in mean and genetic covariances associated with dominance due to inbreeding resulted in significantly biased predictions of both effects in generations with inbreeding. Bias, assessed as the average difference between predicted and simulated genetic effects in each generation, increased almost linearly with the inbreeding coefficient. In a second statistical model the average effect of inbreeding on the mean was accounted for by a regression of phenotypic value on the inbreeding coefficient. The total dominance effect of an individual in that case was the sum of the average effect of inbreeding and an individual effect of dominance. Despite a high mean inbreeding coefficient (up to 0.35), predictions of additive and dominance effects obtained with this model were empirically unbiased for each initial frequency in the absence of selection and 64 unlinked loci. With phenotypic selection of 5 males and only 10 females in each generation and 64 loci, however, predictions of additive and dominance effects were significantly biased. Observed biases disappeared with 1,600 loci for allelic frequencies at 0.2 and 0.5. Bias was due to a considerable change in allelic frequency with phenotypic selection. Ignoring both the covariance between additive and dominance effects with inbreeding and the change in dominance variance due to inbreeding did not significantly bias prediction of additive and dominance effects in selected or unselected populations with inbreeding. 相似文献
14.
15.
Weiwen Zhang Fengxiao Yang Dejin Ou Ge Lin Aiyun Huang 《Journal of biomolecular structure & dynamics》2013,31(16):4274-4282
AbstractTypical endocrine disrupting chemicals, including BPA (Bisphenol A), E2 (17-β-Estradiol) and PCB 72 (polychlorinated biphenyl 72), are commonly and widely present in the environment with good chemical stability that are difficult to decompose in vitro and in vivo. Most of the high-qualified antibodies are required as the key biomaterials to fabricate the immunosensor for capturing and detecting. As an ideal alternative, the short-chain oligonucleotides (aptamer) are essentially and effectively employed with the advantages of small size, chemical stability and high effectiveness for monitoring these environmental contaminants. However, the molecular interaction, acting site and mode are still not well understood. In this work, we explored the binding features of the aptamers with their targeting ligands. The molecular dynamics simulations were performed on the aptamer–ligand complex systems. The stability of each simulation system was evaluated based on its root-mean-square deviation. The affinities of these proposed ligands and the predicted binding sites are analyzed. According to the binding energy analysis, the affinities between ligands and aptamers and the stability of the systems are BPA?>?PCB 72 >E2. Trajectory analysis for these three complexes indicated that these three ligands were able to steadily bind with aptamers at docking site from 0 to 50?ns and contributed to alteration of conformation of aptamers. 相似文献
16.
Although many species of fungi are able to degrade highly toxic chemicals, only a few species have been evaluated for resistance to toxic effects of these chemicals. In this paper we demonstrate the successful application of a method to rapidly screen several species of fungi for toxicity to chemicals or mixtures of chemicals using pentachlorophenol (PCP) as a model toxic compound. Cellulose antibiotic assay disks were soaked in solutions containing different concentrations of PCP (5, 10, 25, 50, and 80 mg l–1) and then placed in a triangular pattern outside the growing edge of the mycelia of eighteen species of white rot fungi. The plates were incubated and observed for development of inhibition zones (non-growth areas) around the disks. The short-term (24 h) growth of all eighteen species of fungi was inhibited by 5–10 mg-PCP l–1, a range similar to that observed using previously reported techniques. Long-term growth studies using this screening method were not useful since PCP diffused from the disk into the agar, decreasing the applied dose. 相似文献
17.
Genotoxic activity of organic chemicals in drinking water 总被引:15,自引:0,他引:15
J R Meier 《Mutation research》1988,196(3):211-245
The information summarized in this review provides substantial evidence for the widespread presence of genotoxins in drinking water. In many, if not most cases, the genotoxic activity can be directly attributed to the chlorination stage of drinking water treatment. The genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Genotoxic activity in drinking water concentrates has been most frequently demonstrated using bacterial mutagenicity tests but results with mammalian cell assay systems are generally consistent with the findings from the bacterial assays. There is currently no evidence for genotoxic damage following in vivo exposures to animals. In some locations genotoxic contaminants of probable industrial and/or agricultural origin occur in the source waters and contribute substantially to the genotoxic activity of finished drinking waters. The method used for sample concentration can have an important bearing on study results. In particular, organic acids account for most of the mutagenicity of chlorinated drinking water, and their recovery from water requires a sample acidification step prior to extraction or XAD resin adsorption. Considerable work has been done to determine the identity of the compounds responsible for the mutagenicity of organic concentrates of drinking water. Recently, one class of acidic compounds, the chlorinated hydroxyfuranones, has been shown to be responsible for a major part of the mutagenic activity. Strategies for drinking water treatment that have been evaluated with respect to reduction of genotoxins in drinking water include granular activated carbon (GAC) filtration, chemical destruction, and the use of alternative means of treatment (i.e., ozone, chlorine dioxide, and monochloramine). GAC treatment has been found to be effective for removal of mutagens from drinking water even after the GAC is beyond its normal use for organic carbon removal. All disinfectant chemicals appear to have the capacity of forming mutagenic chemicals during water treatment. However, the levels of mutagenicity formed with the alternative disinfectants have been generally less than those seen with chlorine and, especially in the case of ozone, highly dependent on the source water.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
Abstract There is growing interest in the enhancement of microbial degradative activities as a means of bringing about the in situ cleanup of contaminated soils and ground water. The halogenated organic compounds are likely to be prime targets for such biotechnological processes because of their widespread utilisation and the biodegradability of many of the most commonly used compounds. The aim of this review is to consider the potential for microbiological cleanup of haloorganic-contaminated sites. The technologies available involve the provision of suitable environmental conditions to facilitate maximum biodegradation rates either in the subsurface or in on-site bioreactors. Methodologies include the supply of inorganic nutrients, the supply of oxygen gas, the addition of degradative microbial inocula and the introduction of co-metabolic substrates. The potential efficiencies and limitations of the methods are critically discussed from a microbiological viewpoint with respect to substrate degradability and population responses to supplementation. 相似文献
19.
Summary The biodegradability of nucleic acid bases (guanine, adenine, cytosine, thymine and uracil) adsorbed on montmorillonite, illite,
kaolinite, soil, gibbsite, goethite and a fulvic acid (FA)-montmorillonite complex was investigated. Each material was mixed
with sand, inoculated with a soil suspension and incubated in a Warburg vessel.
Lag periods in O2 uptake were observed at pH 4 and 6 but not at pH 8. Following the lag periods, adsorbed nucleic acid bases were degraded
rapidly at linear rates until these levelled off. The cessation of O2-uptake was shown to be due to the formation of excessive amounts of gaseous NH3, which not only inhibited microbial respiration by raising the pH to 8 and higher, but also by killing bacteria and actinomycetes.
The rate of biodegradation was found to depend on the type of clay or oxide, the dominant cation and the pH.
Contribution No 1181 相似文献
20.
Gensen Kai A. Scott Weber Wei Chi Ying 《Journal of industrial microbiology & biotechnology》1991,8(2):99-106
Summary In this study, a continuous-flow UV-induced mutation (CUM) device and the CUM device coupled to a selector (CUMS) reactor were fabricated and tested for their ability to enhance the probability of obtaining populations capable of chlorinated organic biodegradation. A mixed culture of bacteria were used as the starting strain for both the CUM and CUMS processes. Populations were obtained from the CUM and CUMS systems capable of 4-chlorobenzoic acid, 2,4-dichlorobenzoic acid and chlorendic acid biodegradation. Non-UV irradiated population served as controls for the experiments and did not demonstrate chlorinated organic biodegradation over the test duration. 相似文献