首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety‐like behavior of homozygous (NCAM−/−) and heterozygous (NCAM+/−) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety‐like behavior was reduced in both NCAM+/+ and NCAM−/− mice by systemic administration of the benzodiazepine agonist diazepam and the 5‐HT1A receptor agonists buspirone and 8‐OH‐DPAT. However, NCAM−/− mice showed anxiolytic‐like effects at lower doses of buspirone and 8‐OH‐DPAT than NCAM+/+ mice. Such increased response to 5‐HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM−/− mice, likely involved in the control of anxiety and aggression. However, 5‐HT1A receptor binding and tissue content of serotonin and its metabolite 5‐hydroxyindolacetic acid were found unaltered in every brain area of NCAM−/− mice investigated, indicating that expression of 5‐HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM−/− mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5‐HT1A receptors and inwardly rectifying K+ channels as the respective effector systems. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 343–355, 1999  相似文献   

2.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

3.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

4.
The serotonin 5‐HT4 receptor (5‐HT4‐R) is an unusually complex G‐protein coupled receptor that is likely to play important roles in brain development and that may underlie the comorbidity of central and peripheral abnormalities in some developmental disorders. We studied the expression of 5‐HT4‐Rs in the developing mouse forebrain at embryonic days 13, 15, 17, and at postnatal days 3 and 14 by using immunohistochemistry, tract tracing, and quantitative RT‐PCR. The developing thalamocortical projections transiently expressed 5‐HT4‐Rs in the embryonic brain and the 5‐HT4‐R expression in the forebrain changed from axonal to somatic around birth. From embryonic days 13–17, the forebrain mRNA levels of the 5‐HT4(a)‐R and 5‐HT4(b)‐R splice variants increased nine‐ and fivefold, respectively, whereas the levels of the 5‐HT4(e)‐R and 5‐HT4(f)‐R variants remained relatively low throughout the studied period of embryonic development. These results suggest that during development 5‐HT4‐R expression undergoes a dynamic regulation and that this regulation may be important for the normal development of sensory and limbic processing. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010.  相似文献   

5.
Alcoholism is a complex disorder involving, among others, the serotoninergic (5‐HT) system, mainly regulated by 5‐HT1A autoreceptors in the dorsal raphe nucleus. 5‐HT1A autoreceptor desensitization induced by chronic 5‐HT reuptake inactivation has been associated with a decrease in ethanol intake in mice. We investigated here whether, conversely, chronic ethanol intake could induce 5‐HT1A autoreceptor supersensitivity, thereby contributing to the maintenance of high ethanol consumption. C57BL/6J mice were subjected to a progressive ethanol intake procedure in a free‐choice paradigm (3–10% ethanol versus tap water; 21 days) and 5‐HT1A autoreceptor functional state was assessed using different approaches. Acute administration of the 5‐HT1A receptor agonist ipsapirone decreased the rate of tryptophan hydroxylation in striatum, and this effect was significantly larger (+75%) in mice that drank ethanol than in those drinking water. Furthermore, ethanol intake produced both an increased potency (+45%) of ipsapirone to inhibit the firing of 5‐HT neurons, and a raise (+35%) in 5‐HT1A autoreceptor‐mediated stimulation of [35S]GTP‐γ‐S binding in the dorsal raphe nucleus. These data showed that chronic voluntary ethanol intake in C57BL/6J mice induced 5‐HT1A autoreceptor supersensitivity, at the origin of a 5‐HT neurotransmission deficit, which might be causally related to the addictive effects of ethanol intake.  相似文献   

6.
The 5‐hydroxytryptamine 1A receptor (serotonin 1A receptor; 5‐HT1AR) is involved in a large series of brain functions, and roles in anxiety, depression, and cognition have been reported. So far, published information on mass spectrometrical characterization of 5‐HT1AR is limited to the presence of two 5‐HT1AR peptides in rat's whole brain as observed by in‐solution digestion followed by LC‐MS/MS. Knowledge about the protein sequence and PTMs, however, would have implications for generation of specific antibodies and designing studies on the 5‐HT1AR at the protein level. A rat recombinant 5‐HT1AR was extracted from the tsA201 cell line, run using several gel‐based principles with subsequent in‐gel digestion with several proteases, chymotrypsin, trypsin, AspN, proteinase K, and pepsin followed by nano‐LC‐ESI‐MS/MS analysis on a high capacity ion trap and an LTQ Orbitrap Velos. Using two search engines, Mascot and Modiro?, the recombinant 5‐HT1AR was identified showing 94.55% sequence coverage. A single phosphorylation at S301 was identified and verified by phosphatase treatment and a series of amino acid substitutions were detected. Characterization of 5‐HT1AR, a key player of brain functions and neurotransmission, was shown and may enable generation of specific antibodies, design of future, and interpretation of previous studies in the rat at the protein level.  相似文献   

7.
The biogenic amine serotonin ( 5‐hydroxytryptamine, 5‐HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G‐protein‐coupled receptors. Five 5‐HT receptor subtypes have been reported in Drosophila that share high similarity with mammalian 5‐HT1A, 5‐HT1B, 5‐HT2A, 5‐HT2B, and 5‐HT7 receptors. We isolated a cDNA (Pr5‐HT8) from larval Pieris rapae, which shares relatively low similarity to the known 5‐HT receptor classes. After heterologous expression in HEK293 cells, Pr5‐HT8 mediated increased [Ca2+]i in response to low concentrations (< 10 nM) of 5‐HT. The receptor did not affect [cAMP]i even at high concentrations (> 10 μM) of 5‐HT. Dopamine, octopamine, and tyramine did not influence receptor signaling. Pr5‐HT8 was also activated by various 5‐HT receptor agonists including 5‐methoxytryptamine, (±)‐8‐Hydroxy‐2‐(dipropylamino) tetralin, and 5‐carboxamidotryptamine. Methiothepin, a non‐selective 5‐HT receptor antagonist, activated Pr5‐HT8. WAY 10635, a 5‐HT1A antagonist, but not SB‐269970, SB‐216641, or RS‐127445, inhibited 5‐HT‐induced [Ca2+]i increases. We infer that Pr5‐HT8 represents the first recognized member of a novel 5‐HT receptor class with a unique pharmacological profile. We found orthologs of Pr5‐HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee or parasitoid wasps. This is likely to be an invertebrate‐specific receptor because there were no similar receptors in mammals.

  相似文献   


8.
9.
Smokers often report an anxiolytic effect of cigarettes. In addition, stress‐related disorders such as anxiety, post‐traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the α5 nicotinic acetylcholine receptor subunit in anxiety‐related responses, control and α5 subunit null mice (α5?/?) were subjected to the open field activity (OFA), light–dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, α5?/? behaved like wild‐type controls. In the EPM, female α5?/? mice displayed an anxiolytic‐like phenotype, while male α5?/? mice were undistinguishable from littermate controls. We studied the hypothalamus–pituitary–adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin‐releasing factor. Consistent with an anxiolytic‐like phenotype, female α5?/? mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of α5, we treated cultured NTera 2 cells with progesterone and found that α5 protein levels were upregulated. In addition, brain levels of α5 mRNA increased upon progesterone injection into ovariectomized wild‐type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic‐like in wild‐type mice, but no cycle‐dependent fluctuations in anxiety levels were found in α5?/? females. Thus, α5‐containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone‐dependent modulation of α5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.  相似文献   

10.
BDNF is thought to provide critical trophic support for serotonin neurons. In order to determine postnatal effects of BDNF on the serotonin system, we examined a line of conditional mutant mice that have normal brain content of BDNF during prenatal development but later depletion of this neurotrophin in the postnatal period. These mice show a behavioral phenotype that suggests serotonin dysregulation. However, as shown here, the presynaptic serotonin system in the adult conditional mutant mice appeared surprisingly normal from histological, biochemical, and electrophysiological perspectives. By contrast, a dramatic and unexpected postsynaptic 5‐HT2A deficit in the mutant mice was found. Electrophysiologically, serotonin neurons appeared near normal except, most notably, for an almost complete absence of expected 5‐HT2A‐mediated glutamate and GABA postsynaptic potentials normally displayed by these neurons. Further analysis showed that BDNF mutants had much reduced 5‐HT2A receptor protein in dorsal raphe nucleus and a similar deficit in prefrontal cortex, a region that normally shows a high level of 5‐HT2A receptor expression. Recordings in prefrontal slice showed a marked deficit in 5‐HT2A‐mediated excitatory postsynaptic currents, similar to that seen in the dorsal raphe. These findings suggest that postnatal levels of BDNF play a relatively limited role in maintaining presynaptic aspects of the serotonin system and a much greater role in maintaining postsynaptic 5‐HT2A and possibly other receptors than previously suspected. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

11.
Acute fasting induced antidepressant‐like effects. However, the exact brain region and mechanism of these actions are still largely unknown. Therefore, in this study the antidepressant‐like effects of acute fasting on c‐Fos expression and BDNF levels were investigated. Consistent with our previous findings, immobility time was remarkably shortened by 9 hrs fasting in the forced swimming test. Furthermore, these antidepressant‐like effects of 9 fasting were inhibited by a 5‐HT2A/2C receptor agonist (±)‐1‐(2, 5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride (DOI), and the effect of DOI was blocked by pretreatment with a selective 5‐HT2A receptor antagonist ketanserin. Immunohistochemical study has shown that c‐Fos level was significantly increased by 9 hrs fasting in prefrontal cortex but not hippocampus and habenular. Fasting‐induced c‐Fos expression was further enhanced by DOI in prefrontal cortex, and these enhancements were inhibited by ketanserin. The increased BDNF levels by fasting were markedly inhibited by DOI in frontal cortex and hippocampus, and these effects of DOI on BDNF levels were also blocked by ketanserin. These findings suggest that the antidepressant‐like effects of acute fasting may be exerted via 5‐HT2A receptor and particularly sensitive to neural activity in the prefrontal cortex. Furthermore, these antidepressant‐like effects are also mediated by CREB and BDNF pathway in hippocampus and frontal cortex. Therefore, fasting may be potentially helpful against depression.  相似文献   

12.
Four known alkyl 4‐hydroxybenzoates, i.e., methyl 4‐hydroxybenzoate ( 1 ), ethyl 4‐hydroxybenzoate ( 2 ), propyl 4‐hydroxybenzoate ( 3 ), and butyl 4‐hydroxybenzoate ( 4 ), were isolated from the seeds of Nelumbo nucifera Gaertner (Nymphaeaceae) for the first time. The structures of the isolates were identified by 1D‐ and 2D‐NMR spectroscopy and comparison with published values. The compounds were evaluated for their effects on the 5‐HT‐stimulated inward current (I5‐HT) mediated by the human 5‐HT3A receptors expressed in Xenopus oocytes. Compounds 1 and 2 enhanced the I5‐HT, but 4 reduced it. These results indicate that 4 is an inhibitor of the 5‐HT3A receptors expressed in Xenopus oocytes.  相似文献   

13.
Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium‐dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa3.1, which contributes to EDR, is upregulated by H2O2. We investigated whether KCa3.1 upregulation compensates for diminished EDR to NO during aging‐related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1‐phosphate were increased in aged wild‐type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild‐type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age‐matched wild‐type mice. Increased H2O2 levels induced Fyn and extracellular signal‐regulated kinases (ERKs) phosphorylation and KCa3.1 upregulation. Catalase/GPX1 double knockout (catalase?/?/GPX1?/?) upregulated KCa3.1 in MAECs. NO production was decreased in aged wild‐type, CerS2 null, and catalase?/?/GPX1?/? MAECs. However, KCa3.1 activation‐induced, NG‐nitro‐l ‐arginine‐, and indomethacin‐resistant EDR was increased without a change in acetylcholine‐induced EDR in aortic rings from aged wild‐type, CerS2 null, and catalase?/?/GPX1?/? mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1‐phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa3.1. Our findings suggest that, during aging‐related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2O2 and thereby upregulate KCa3.1 expression and function via a H2O2/Fyn‐mediated pathway. Altogether, enhanced KCa3.1 activity may compensate for decreased NO signaling during vascular aging.  相似文献   

14.
Agonists at G-protein-coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock-out mice devoid of the serotonin transporter (5-HTT(-/-)) exhibit lower efficacy to inhibit cellular discharge than in wild-type counterparts. Using patch-clamp whole-cell recordings, we found that a G-protein-gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5-HT1A agonists (5-carboxamidotryptamine (5-CT) and (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide (8-OH-DPAT); 50 nM-30 microM) in both wild-type and 5-HTT(-/-) female and male mice. These effects were mimicked by 5'-guanylyl-imido-diphosphate (Gpp(NH)p; 400 microM) dialysis into cells with differences between genders. The 5-HTT(-/-) knock-out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5-HT1A receptors to agonists in 5-HTT(-/-) mutants reflects notably alteration in the coupling between G-proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5-HT neurotransmission appear to depend-at least in part-on sex-related variations in corresponding receptor-G protein signaling mechanisms.  相似文献   

15.
Neuronal G protein‐gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post‐synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABAB receptors. In this study, we show for the first time that GABAB receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABAB receptors reduces glutamate release and the Ca2+ influx mediated by N‐type Ca2+ channels in a mode insensitive to the GIRK channel blocker tertiapin‐Q and consistent with direct inhibition of this voltage‐gated Ca2+ channel. However, by means of weak stimulation protocols, we reveal that GABAB receptors also reduce glutamate release mediated by P/Q‐type Ca2+ channels, and that these responses are reversed by the GIRK channel blocker tertiapin‐Q. Consistent with the functional interaction between GABAB receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre‐synaptic boutons of asymmetric synapses co‐express GABAB receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post‐synaptic level, also occurs at glutamatergic nerve terminals.  相似文献   

16.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin and tyrosine kinase growth factor signaling. We have recently demonstrated that PTP1B deficiency increases GLUT2/insulin receptor (IR) A complexes and glucose uptake in suckling, but not adult, primary hepatocytes. Herein we have investigated intrahepatic glucose utilization in 3–5 days old wild‐type and PTP1B?/? mice. PTP1B deficiency decreased glycogen, lactate, and pyruvate content in the livers from suckling mice. Conversely, the activity of glucose 6‐phosphate dehydrogenase (G6PD), the rate limiting enzyme of the pentose phosphate cycle (PPC) which provides substrates for DNA synthesis, was enhanced in the liver of PTP1B?/? animals. Liver weight, liver‐to‐body mass ratio, DNA content, and PCNA expression were increased in PTP1B?/? suckling mice compared to the wild‐type controls. At the molecular level, STAT 5B phosphorylation, IGF‐I mRNA, and protein levels as well as IGF‐IR tyrosine phosphorylation were increased in the livers of PTP1B‐deficient neonates. Unexpectedly, hepatic and serum triglycerides (TG) were increased by PTP1B deficiency, although the expression of lipogenic enzymes remained as in the wild‐type controls. However, the analysis of milk composition revealed higher TG content in lactating females lacking PTP1B. The effects of PTP1B deficiency on G6PD activity, STAT 5B/IGF‐I/IGF‐IR axis, PCNA expression and liver growth during suckling were maintained by transferring PTP1B?/? embryos (PTP1B?/?T) to a wild‐type female. Conversely, PTP1B?/?T mice did not show hepatic fat accumulation. In conclusion, the present study suggests that PTP1B plays a unique role in the control of the physiological liver development after birth. J. Cell. Physiol. 225: 214–222, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Highlights? Kif13a?/? mice show elevated-anxiety-like behavioral defects ? 5HT1A receptors are not properly transported in Kif13a?/? neurons ? The forkhead-associated domain of KIF13A associates directly with 5HT1A receptors ? KIF13A can translocate 5HT1A receptors in vivo and in vitro  相似文献   

18.
Toll‐like receptor 5 recognizes bacterial flagellin, plays a critical role in innate immunity, and contributes to flagellin‐specific humoral immunity. Further, TLR5‐expressing dendritic cells play an important role in IgA synthesis in the intestine; however, the contribution of TLR5 to antigen (Ag)‐specific mucosal immunity remains unclear. Thus, whether TLR5 is essential for the induction of intestinal secretory (S)IgA antibody (Ab) responses against flagellin and bacterial Ags attached to the bacterial surface in response to an oral flagellated bacterium, Salmonella, was explored in this study. Our results indicate that when TLR5 knockout (TLR5?/?) mice are orally immunized with recombinant Salmonella expressing fragment C of tetanus toxin (rSalmonella‐Tox C), tetanus toxoid (TT)‐ and flagellin (FliC)‐specific systemic IgG and intestinal SIgA Abs are elicited. The numbers of TT‐specific IgG Ab‐forming cells (AFCs) in the spleen and IgA AFCs in the lamina propria (LP) of TLR5?/? mice were comparable to those in wild‐type mice. rSalmonella‐Tox C was equally disseminated in TLR5?/? mice, TLR5?/? mice lacking Peyer's patches (PPs), and wild‐type mice. In contrast, TLR5?/? PP‐null mice failed to induce TT‐ and FliC‐specific SIgA Abs in the intestine and showed significantly reduced numbers of TT‐specific IgA AFCs in the LP. These results suggest that TLR5 is dispensable for the induction of flagellin and surface Ag‐specific systemic and mucosal immunity against oral flagellated bacteria. Rather, pathogen recognition, which occurs in PPs, is a prerequisite for the induction of mucosal immunity against flagellated bacteria.
  相似文献   

19.
The nucleus accumbens (NAc) is a crucial forebrain nucleus implicated in reward‐based decision‐making. While NAc neurons are richly innervated by serotonergic fibers, information on the functional role of serotonin 5‐hydroxytryptamine (5‐HT) in the NAc is still sparse. Here, we demonstrate that brief application of 5‐HT or 5‐HT1B receptor agonist CP 93129 induced a long‐term depression (LTD) of glutamatergic transmission in NAc neurons. This LTD was presynaptically mediated and inducible by endogenous 5‐HT. Remarkably, a single cocaine exposure impaired the induction of LTD by 5‐HT or CP 93129. The inhibition was blocked when a selective dopamine D1 receptor antagonist SCH23390 was coadministered with cocaine. Cocaine treatment resulted in increased phosphorylation of presynaptic proteins, rabphilin 3A and synapsin 1, and significantly attenuated CP 93129‐induced decrease in rabphilin 3A and synapsin 1 phosphorylation. Application of cAMP‐dependent protein kinase inhibitor KT5720 caused a prominent synaptic depression in NAc neurons of mice with a history of cocaine exposure. Our results reveal a novel 5‐HT1B receptor‐mediated LTD in the NAc and suggest that cocaine exposure may result in elevated phosphorylation of presynaptic proteins involved in regulating glutamate release, which counteracts the presynaptic depressant effects of 5‐HT1B receptors and thereby impairs the induction of LTD by 5‐HT.  相似文献   

20.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号