首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 557 毫秒
1.
Hedgehog proteins are important in the development of the nervous system. As Desert hedgehog (Dhh) is involved in the development of peripheral nerves and is expressed in adult nerves, it may play a role in the maintenance of adult nerves and degeneration and regeneration after injury. We firstly investigated the Dhh-receptors, which are expressed in mouse adult nerves. The Dhh receptor patched(ptc)2 was detected in adult sciatic nerves using RT-PCR, however, ptc1 was undetectable under the same experimental condition. Using RT-PCR in purified cultures of mouse Schwann cells and fibroblasts, we found ptc2 mRNA in Schwann cells, and at much lower levels, in fibroblasts. By immunohistochemistry, Ptc2 protein was seen on unmyelinated nerve fibers. Then we induced crush injury to the sciatic nerves of wild-type (WT) and dhh-null mice and the distal stumps of injured nerves were analyzed morphologically at different time points and expression of dhh and related receptors was also measured by RT-PCR in WT mice. In dhh-null mice, degeneration of myelinated fibers was more severe than in WT mice. Furthermore, in regenerated nerves of dhh-null mice, minifascicular formation was even more extensive than in dhh-null intact nerves. Both dhh and ptc2 mRNA levels were down-regulated during the degenerative phase postinjury in WT mice, while levels rose again during the phase of nerve regeneration. These results suggest that the Dhh-Ptc2 signaling pathway may be involved in the maintenance of adult nerves and may be one of the factors that directly or indirectly determines the response of peripheral nerves to injury.  相似文献   

2.
We show that Schwann cell-derived Desert hedgehog (Dhh) signals the formation of the connective tissue sheath around peripheral nerves. mRNAs for dhh and its receptor patched (ptc) are expressed in Schwann cells and perineural mesenchyme, respectively. In dhh-/- mice, epineurial collagen is reduced, while the perineurium is thin and disorganized, has patchy basal lamina, and fails to express connexin 43. Perineurial tight junctions are abnormal and allow the passage of proteins and neutrophils. In nerve fibroblasts, Dhh upregulates ptc and hedgehog-interacting protein (hip). These experiments reveal a novel developmental signaling pathway between glia and mesenchymal connective tissue and demonstrate its molecular identity in peripheral nerve. They also show that Schwann cell-derived signals can act as important regulators of nerve development.  相似文献   

3.
Hydrogen sulfide (H2S) functions as a physiological gas transmitter in both normal and pathophysiological cellular events. H2S is produced from substances by three enzymes: cystathionine β‐synthase (CBS), cystathionine γ‐lyase (CSE), and 3‐mercaptopyruvate sulfurtransferase (MST). In human tissues, these enzymes are involved in tissue‐specific biochemical pathways for H2S production. For example, CBS and cysteine aminotransferase/MST are present in the brain, but CSE is not. Thus, we examined the expression of H2S production‐related enzymes in peripheral nerves. Here, we found that CSE and MST/cysteine aminotransferase, but not CBS, were present in normal peripheral nerves. In addition, injured sciatic nerves in vivo up‐regulated CSE in Schwann cells during Wallerian degeneration (WD); however, CSE was not up‐regulated in peripheral axons. Using an ex vivo sciatic nerve explant culture, we found that the inhibition of H2S production broadly prevented the process of nerve degeneration, including myelin fragmentation, axonal degradation, Schwann cell dedifferentiation, and Schwann cell proliferation in vitro and in vivo. Thus, these results indicate that H2S signaling is essential for Schwann cell responses to peripheral nerve injury.

  相似文献   


4.
Previous clinical observations and data from mouse models with defects in lipid metabolism suggested that epineurial adipocytes may play a role in peripheral nervous system myelination. We have used adipocyte‐specific Lpin1 knockout mice to characterize the consequences of the presence of impaired epineurial adipocytes on the myelinating peripheral nerve. Our data revealed that the capacity of Schwann cells to establish myelin, and the functional properties of peripheral nerves, were not affected by compromised epineurial adipocytes in adipocyte‐specific Lpin1 knockout mice. To evaluate the possibility that Lpin1‐negative adipocytes are still able to support endoneurial Schwann cells, we also characterized sciatic nerves from mice carrying epiblast‐specific deletion of peroxisome proliferator‐activated receptor gamma, which develop general lipoatrophy. Interestingly, even the complete loss of adipocytes in the epineurium of peroxisome proliferator‐activated receptor gamma knockout mice did not lead to detectable defects in Schwann cell myelination. However, probably as a consequence of their hyperglycemia, these mice have reduced nerve conduction velocity, thus mimicking the phenotype observed under diabetic condition. Together, our data indicate that while adipocytes, as regulators of lipid and glucose homeostasis, play a role in nerve function, their presence in epineurium is not essential for establishment or maintenance of proper myelin.  相似文献   

5.
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.  相似文献   

6.
Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high‐copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2‐mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2‐M arrest. Clb2‐associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2‐M cell cycle transition after activation of the CWI pathway.  相似文献   

7.
Basic fibroblast growth factor (FGF‐2) is expressed in the peripheral nervous system and is up‐regulated after nerve lesion. It has been demonstrated that administration of FGF‐2 protects neurons from injury‐induced cell death and promotes axonal regrowth. Using transgenic mice over‐expressing FGF‐2 (TgFGF‐2), we addressed the importance of endogenously generated FGF‐2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild‐type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF‐2. Morphometric evaluation of intact nerves from TgFGF‐2 mice revealed no difference in number and size of myelinated fibers compared to wild‐type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF‐2 over‐expression on Schwann cell proliferation during the early regeneration process, we used BrdU‐labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild‐types. We propose that endogenously synthesized FGF‐2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

9.
During perinatal development, proprioceptive muscle afferents are quite sensitive to nerve injury. Here, we have used transgenic mice that overexpress neurotrophin‐3 (NT‐3) in skeletal muscle (myo/NT‐3 mice) to explore whether NT‐3 plays a neuroprotective role for perinatal muscle afferents following nerve injury. Measurements of NT‐3 mRNA using RT‐PCR revealed that levels of endogenous NT‐3 mRNA in wild‐type muscles remained constant during the first postnatal week following nerve crush or nerve section on postnatal day (PN) 1. In comparison, myo/NT‐3 mice had significantly elevated levels of NT‐3 mRNA that were maintained or increased following injury. To assess whether muscle‐derived NT‐3 could prevent injury‐induced neuronal death, neuron survival in the DRG was analyzed in mice 5 days after sciatic nerve crush on PN3. Retrograde prelabeling of muscle afferents and parvalbumin immunocytochemistry both revealed that overexpression of NT‐3 in muscle significantly reduced neuronal loss following injury. Similar neuroprotective effects of NT‐3 were observed in wild‐type mice injected with exogenous NT‐3 in the gastrocnemius muscles. To test whether NT‐3 could prevent muscle spindle degeneration, spindle number and morphology were assessed 3 weeks after sciatic nerve crush or section on PN1. No spindles were present in either wildtype or myo/NT‐3 muscles after nerve section, demonstrating that NT‐3 overexpression cannot maintain spindles following complete denervation. Moreover, NT‐3 overexpression could not prevent moderate spindle loss in muscle and did not stimulate new spindle formation following nerve crush. Our results demonstrate that in addition to its early actions on sensory neuron generation and naturally occurring cell death, NT‐3 has important neuroprotective effects on muscle afferents during postnatal development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 198–208, 2002; DOI 10.1002/neu.10024  相似文献   

10.
11.
Wei Y  Gong K  Zheng Z  Liu L  Wang A  Zhang L  Ao Q  Gong Y  Zhang X 《Cell proliferation》2010,43(6):606-616
Objectives: Schwann cell (SC) transplantation is a promising therapy for peripheral nerve transaction, however, clinical use of SCs is limited due to their very limited availability. Adipose‐derived stem cells (ADSCs) have been identified as an alternative source of adult stem cells in recent years. The aim of this study was to evaluate the feasibility of using ADSCs as a source of stem cells for differentiation into Schwann‐like cells by an indirect co‐culture approach, in vitro. Materials and methods: Multilineage differentiation potential of the obtained ADSCs was assayed by testing their ability to differentiate into osteoblasts and adipocytes. The ADSCs were co‐cultured with SCs to be induced into Schwann‐like cells through proximity, using a Millicell system. Expression of typical SC markers S‐100, GFAP and P75NTR of the treated ADSCs was determined by immunocytochemical staining, western blotting and RT‐PCR. Myelination capacity of the differentiated ADSCs (dADSCs) was evaluated in dADSC/dorsal root ganglia neuron (DRGN) co‐cultures. Results: The treated ADSCs adopted a spindle shaped‐like morphology after co‐cultured with SCs for 6 days. All results of immunocytochemical staining, western blotting and RT‐PCR showed that the treated cells expressed S‐100, GFAP and P75NTR, indications of differentiation. dADSCs could form Schwann‐like cell myelin in co‐culture with DRGNs. Undifferentiated ADSCs (uADSCs) did not form myelin compared to DRGNs cultured alone, but could produce neurite extension. Conclusions: These results demonstrate that this indirect co‐culture microenvironment could induce ADSCs to differentiate into Schwann‐like cells in vitro, which may be beneficial for treatment of peripheral nerve injuries in the near future.  相似文献   

12.
Myelin sheath is the proteolipid membrane wrapping the axons of CNS and PNS. We have shown data suggesting that CNS myelin conducts oxidative phosphorylation (OXPHOS), challenging its role in limiting the axonal energy expenditure. Here, we focused on PNS myelin. Samples were: (i) isolated myelin vesicles (IMV) from sciatic nerves, (ii) mitochondria from primary Schwann cell cultures, and (iii) sciatic nerve sections, from wild type or Charcot‐Marie‐Tooth type 1A (CMT1A) rats. The latter used as a model of dys‐demyelination. O2 consumption and activity of OXPHOS proteins from wild type (Wt) or CMT1A sciatic nerves showed some differences. In particular, O2 consumption by IMV from Wt and CMT1A 1‐month‐old rats was comparable, while it was severely impaired in IMV from adult affected animals. Mitochondria extracted from CMT1A Schwann cell did not show any dysfunction. Transmission electron microscopy studies demonstrated an increased mitochondrial density in dys‐demyelinated axons, as to compensate for the loss of respiration by myelin. Confocal immunohistochemistry showed the expression of OXPHOS proteins in the myelin sheath, both in Wt and dys‐demyelinated nerves. These revealed an abnormal morphology. Taken together these results support the idea that also PNS myelin conducts OXPHOS to sustain axonal function.  相似文献   

13.
14.
AimsAfter peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves.Main methodsIn p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry.Key findingsThe results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice.SignificanceOur data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.  相似文献   

15.
We have evaluated the ectopic new bone formation effects of CPC (calcium phosphate cement) seeded with pBMP‐2 (plasmids containing bone morphogenetic protein‐2 gene) transfected canine bMSCs (bone marrow stromal cells) mediated by a non‐viral PEI (polyethylenimine) derivative (GenEscort? II) in nude mice. Canine bMSCs were transfected with pBMP‐2 or pEGFP (plasmids containing enhanced green fluorescent protein gene) mediated by GenEscort? II in vitro, and the osteoblastic differentiation was explored by ALP (alkaline phosphatase) staining, ARS (alizarin red S) staining and RT—qPCR (real‐time quantitative PCR) analysis. Ectopic bone formation effects of CPC/pBMP‐2 transfected bMSCs were evaluated and compared with CPC/pEGFP transfected bMSCs or CPC/untransfected bMSCs through histological, histomorphological and immunohistochemical analysis 8 and 12 weeks post‐operation in nude mice. Transfection efficiency was up ~35% as demonstrated by EGFP (enhanced green fluorescent protein) expression. ALP and ARS staining were stronger with pBMP‐2 gene transfection, and mRNA expression of BMP‐2 (bone morphogenetic protein‐2), Col 1 (collagen 1) and OCN (osteocalcin) in pBMP‐2 group was significantly up‐regulated at 6 and 9 days. Significantly higher NBV (new bone volume) was achieved in pBMP‐2 group than in the control groups at 8 and 12 weeks (P<0.05). In addition, immunohistochemical analysis indicated higher OCN expression in pBMP‐2 group (P<0.01). We conclude that CPC seeded with pBMP‐2 transfected bMSCs mediated by GenEscort? II could enhance ectopic new bone formation in nude mice, suggesting that GenEscort? II mediated pBMP‐2 gene transfer is an effective non‐viral method and CPC is a suitable scaffold for gene enhanced bone tissue engineering.  相似文献   

16.
Pharmacological approaches and optical recordings have shown that Schwann cells of a myelinating phenotype are activated by 5-HT upon its interaction with the 5-HT2A receptor (5-HT2AR). In order to further characterize the expression and distribution of this receptor in Schwann cells, we examined rat sciatic nerve and cultured rat Schwann cells using probes specific to 5-HT2AR protein mRNA. We also examined the endogenous sources of 5-HT in rat sciatic nerve by employing both histochemical stains and an antibody that specifically recognizes 5-HT. Rat Schwann cells of a myelinating phenotype contained both 5-HT2AR protein and mRNA. In the healthy adult rat sciatic nerve, 5-HT2ARs were evenly distributed along the outermost portion of the Schwann cell plasma membrane and within the cytoplasm. The most prominent source of 5-HT was within granules of the endoneurial mast cells, closely juxtaposed to Schwann cells within myelinating sciatic nerves. These results support the hypothesis that the 5-HT receptors expressed by rat Schwann cells in vivo are activated by the release of 5-HT from neighboring mast cells.  相似文献   

17.
Fibroblast growth factor 21 (FGF21) as a metabolic stress hormone, is mainly secreted by the liver. In addition to its well‐defined roles in energy homeostasis, FGF21 has been shown to promote remyelination after injury in the central nervous system. In the current study, we sought to examine the potential roles of FGF21 in the peripheral nervous system (PNS) myelination. In the PNS myelin development, Fgf21 expression was reversely correlated with myelin gene expression. In cultured primary Schwann cells (SCs), the application of recombinant FGF21 greatly attenuates myelination‐associated gene expression, including Oct6, Krox20, Mbp, Mpz, and Pmp22. Accordingly, the injection of FGF21 into neonatal rats markedly mitigates the myelination in sciatic nerves. On the contrary, the infusion of the anti‐FGF21 antibody accelerates the myelination. Mechanistically, both extracellular signal‐regulated kinase (ERK) and p38 mitogen‐activated protein kinase (MAPK) were stimulated by FGF21 in SCs and sciatic nerves. Following experiments including pharmaceutical intervention and gene manipulation revealed that the p38 MAPK/c‐Jun axis, rather than ERK, is targeted by FGF21 for mediating its repression on myelination in SCs. Taken together, our data provide a new aspect of FGF21 by acting as a negative regulator for the myelin development process in the PNS via activation of p38 MAPK/c‐Jun.  相似文献   

18.
The expression of the neural cell adhesion molecules L1 and N-CAM and of their shared carbohydrate epitope L2/HNK-1 was studied during the development and after the transection of mouse sciatic nerves. During development, L1 and N-CAM were detectable on most, if not all, Schwann cells at embryonic day 17, the earliest stage tested. With increasing age, the immunoreactivity was reduced being confined to non-myelinating Schwann cells by post-natal day 10, at which stage the staining pattern resembled that seen in adult sciatic nerves. Double-immunolabelling experiments revealed a complete overlap between L1 and N-CAM antibodies. The L2/HNK-1 epitope was not detectable in developing sciatic nerves until the end of the 2nd post-natal week, when it appeared to be associated with the outer profiles of thick myelin sheets, as also seen in adult sciatic nerves. Three days after the transection of adult sciatic nerves, L1 antigen and N-CAM was detectable in more Schwann cells in the distal nerve end than in untreated control nerves. The peak level of the reappearance of L1 antigen and N-CAM in Schwann cells occurred between 2 and 4 weeks after transection. The reduction of L1-antigen expression to its normal adult level took more than a year, thus recapitulating normal development, but on a more protracted time scale. Similarly, the L2/HNK-1 epitope remained undetectable until the transected nerve had returned to its normal state of myelination, i.e. approximately 1 year after transection.  相似文献   

19.
20.
Fry EJ  Ho C  David S 《Neuron》2007,53(5):649-662
We report a role for Nogo receptors (NgRs) in macrophage efflux from sites of inflammation in peripheral nerve. Increasing numbers of macrophages in crushed rat sciatic nerves express NgR1 and NgR2 on the cell surface in the first week after injury. These macrophages show reduced binding to myelin and MAG in vitro, which is reversed by NgR siRNA knockdown and by inhibiting Rho-associated kinase. Fourteen days after sciatic nerve crush, regenerating nerves with newly synthesized myelin have fewer macrophages than cut/ligated nerves that lack axons and myelin. Almost all macrophages in the cut/ligated nerves lie within the Schwann cell basal lamina, while in the crushed regenerating nerves the majority migrate out. Furthermore, crush-injured nerves of NgR1- and MAG-deficient mice and Y-27632-treated rats show impaired macrophage efflux from Schwann cell basal lamina containing myelinated axons. These data have implications for the resolution of inflammation in peripheral nerve and CNS pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号