首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter’s engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.  相似文献   

3.
Presynaptic serotonin (5‐hydroxytryptamine, 5‐HT) transporters (SERT) regulate 5‐HT signaling via antidepressant‐sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive‐compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region‐ and gender‐specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin‐15 gene (Pcdh15), overlapped with a QTL for midbrain 5‐HT levels. Pcdh15 was also the only QTL‐associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5‐HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5‐HT neurons. To test this hypothesis, we assessed SERT protein and 5‐HT traits in the Pcdh15 functional null line (Pcdh15av‐3J), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness .  相似文献   

4.
Plasma serotonin levels and the platelet serotonin transporter   总被引:1,自引:0,他引:1  
Serotonin (5HT) is a platelet-stored vasoconstrictor. Altered concentrations of circulating 5HT are implicated in several pathologic conditions, including hypertension. The actions of 5HT are mediated by different types of receptors and terminated by a single 5HT transporter (SERT). Therefore, SERT is a major mechanism that regulates plasma 5HT levels to prevent vasoconstriction and thereby secure a stable blood flow. In this study, the response of platelet SERT to the plasma 5HT levels was examined within two models: (i) in subjects with chronic hypertension or normotension; (ii) on platelets isolated from normotensive subjects and pretreated with 5HT at various concentrations. The platelet 5HT uptake rates were lower during hypertension due to a decrease in Vmax with a similar Km; also, the decrease in Vmax was primarily due to a decrease in the density of SERT on the platelet membrane, with no change in whole cell expression. Additionally, while the platelet 5HT content decreased 33%, the plasma 5HT content increased 33%. Furthermore, exogenous 5HT altered the 5HT uptake rates by changing the density of SERT molecules on the plasma membrane in a biphasic manner. Therefore, we hypothesize that in a hypertensive state, the elevated plasma 5HT levels induces a loss in 5HT uptake function in platelets via a decrease in the density of SERT molecules on the plasma membrane. Through the feedback effect of this proposed mechanism, plasma 5HT controls its own concentration levels by modulating the uptake properties of platelet SERT.  相似文献   

5.
The role of 5‐hydroxytryptamine (5‐HT, serotonin) in the control of leech behavior is well established and has been analyzed extensively on the cellular level; however, hitherto little is known about the effect of 5‐HT on the cytosolic free calcium concentration ([Ca2+]i) in leech neurons. As [Ca2+]i plays a pivotal role in numerous cellular processes, we investigated the effect of 5‐HT on [Ca2+]i (measured by Fura‐2) in identified leech neurons under different experimental conditions, such as changed extracellular ion composition and blockade of excitatory synaptic transmission. In pressure (P), lateral nociceptive (N1), and Leydig neurons, 5‐HT induced a [Ca2+]i increase which was predominantly due to Ca2+ influx since it was abolished in Ca2+‐free solution. The 5‐HT‐induced Ca2+ influx occurred only if the cells depolarized sufficiently, indicating that it was mediated by voltage‐dependent Ca2+ channels. In P and N1 neurons, the membrane depolarization was due to Na+ influx through cation channels coupled to 5‐HT receptors, whereby the dose‐dependency suggests an involvement in excitatory synaptic transmission. In Leydig neurons, 5‐HT receptor‐coupled cation channels seem to be absent. In these cells, the membrane depolarization activating the voltage‐dependent Ca2+ channels was evoked by 5‐HT‐triggered excitatory glutamatergic input. In Retzius, anterior pagoda (AP), annulus erector (AE), and median nociceptive (N2) neurons, 5‐HT had no effect on [Ca2+]i. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

6.
Many psychotropic substances used either for medications or illicit recreational purposes are able to produce an increase in extracellular serotonin (5HT) in the CNS. 5HT is well known to improve mood; however, only when the levels of its release are in an appropriate range. Excessive 5HT is harmful, and will generally result in serotonin syndrome. To date, clinical diagnosis of serotonin syndrome relies exclusively on observation of symptoms because of a lack of available laboratory tests. The goal of this study was to characterize the onset of the syndrome using laboratory settings to determine excessive 5HT‐evoked neurological abnormalities. Experiments were carried out in rats with the syndrome being elicited by three groups of 5HT‐promoting drugs: (i) (±)‐3,4‐methylenedioxymethamphetamine (MDMA); (ii) a combination of the monoamine oxidase inhibitor clorgyline with the 5HT precursor 5‐hydroxytryptophan; (iii) clorgyline combined with the serotonin‐selective reuptake inhibitor paroxetine. The onset of the syndrome was characterized by electroencephalography (EEG), tremor, and brain/plasma 5HT tests. We found that a mild syndrome was associated with reduced EEG amplitudes while a severe syndrome strongly with seizure‐like EEG activity and increased tremor activity. The occurrence of the syndrome was confirmed with microdialysis, showing excessive 5HT efflux in brain dialysate and the increased concentration of unbound 5HT in the plasma. Our findings suggest that the syndrome onset can be revealed with EEG recording, measurements of tremor activity and changes of unbound 5HT concentration in the plasma.  相似文献   

7.
Neuropeptides related to vertebrate tachykinins have been identified in Drosophila. Two Drosophila G‐protein‐coupled receptors (GPCRs), designated NKD (CG6515) and DTKR (CG7887), cloned earlier, display sequence similarities to mammalian tachykinin receptors. However, they were not characterized with the endogenous Drosophila tachykinins (DTKs). The present study characterizes one of these receptors, DTKR. We determined that HEK‐293 cells transfected with DTKR displayed dose‐dependent increases in both intracellular calcium and cyclic AMP levels in response to the different DTK peptides. DTK peptides also induced internalization of DTKR‐green fluorescent protein (GFP) fusion constructs in HEK‐293 cells. We generated specific antireceptor antisera and showed that DTKR is widely distributed in the adult brain and more scarcely in the larval CNS. The distribution of the receptor in brain neuropils corresponds well with the distribution of its ligands, the DTKs. Our findings suggest that DTKR is a DTK receptor in Drosophila and that this ligand‐receptor system plays multiple functional roles. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
9.
1. Serotonin is a neurotransmitter in the central nervous system which has been implicated in the aetiology and pathogenesis of affective disorders. The serononergic system also plays several roles in the immune system through the expression of a number of its receptor subtypes in the immune cells.2. Following release serotonin is inactivated by reuptake into neurons and other cells by a specific serotonin sodium and chloride-dependent transporter molecule, whose structure has been elucidated.3. Measurement [3H]paroxetine binding showed that human lymphocytes contain a high-affinity serotonin transporter.4. To assess the serotonin function in major depression, we investigated serotonin transporter density in blood lymphocytes from patients with this disorder and selected according to the interview of the American Psychiatric Association.5. Patients were divided into two groups and treated with two different antidepressant drugs, one group receiving fluoxetine, a selective serotonin reuptake inhibitor, and another mirtazapine, an antagonist of 2-adrenergic auto and heteroreceptors, for a period of 6 weeks.6. Blood samples were obtained before and after the treatment, lymphocytes were isolated by Ficoll/Hypaque gradient, subjected to differential adhesion to plastic, and cell membranes were prepared for binding assay of [3H]paroxetine.7. Lymphocytes serotonin transporter number was significantly reduced, while the affinity was unchanged, in patients with major depression disorder as compare to controls.8. In addition, there was a partial recovery in lymphocytes serotonin(5HT) transporter number in the period posterior to the antidepressants administration, accompanied with clinical and depression rating scales improvement. Serotonin was determined in platelet-poor plasma and in lymphocytes before and after drugs administration, showing a significant decrease in the patients treated compared to untreated and controls.9. These results are evidence of the potential interaction between the nervous and immune systems. The mechanisms underlying this interaction are under study, and might be related to modifications in the expression or function of the serotonin transporters in lymphocytes of depressed patients.  相似文献   

10.
Agonists at G‐protein‐coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock‐out mice devoid of the serotonin transporter (5‐HTT?/?) exhibit lower efficacy to inhibit cellular discharge than in wild‐type counterparts. Using patch‐clamp whole‐cell recordings, we found that a G‐protein‐gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5‐HT1A agonists (5‐carboxamidotryptamine (5‐CT) and (±)‐2‐dipropylamino‐8‐hydroxy‐1,2,3,4‐tetrahydronaphthalene hydrobromide (8‐OH‐DPAT); 50 nM–30 μM) in both wild‐type and 5‐HTT?/? female and male mice. These effects were mimicked by 5′‐guanylyl‐imido‐diphosphate (Gpp(NH)p; 400 μM) dialysis into cells with differences between genders. The 5‐HTT?/? knock‐out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5‐HT1A receptors to agonists in 5‐HTT?/? mutants reflects notably alteration in the coupling between G‐proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5‐HT neurotransmission appear to depend—at least in part—on sex‐related variations in corresponding receptor‐G protein signaling mechanisms. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

11.
The nucleus accumbens (NAc) is a crucial forebrain nucleus implicated in reward‐based decision‐making. While NAc neurons are richly innervated by serotonergic fibers, information on the functional role of serotonin 5‐hydroxytryptamine (5‐HT) in the NAc is still sparse. Here, we demonstrate that brief application of 5‐HT or 5‐HT1B receptor agonist CP 93129 induced a long‐term depression (LTD) of glutamatergic transmission in NAc neurons. This LTD was presynaptically mediated and inducible by endogenous 5‐HT. Remarkably, a single cocaine exposure impaired the induction of LTD by 5‐HT or CP 93129. The inhibition was blocked when a selective dopamine D1 receptor antagonist SCH23390 was coadministered with cocaine. Cocaine treatment resulted in increased phosphorylation of presynaptic proteins, rabphilin 3A and synapsin 1, and significantly attenuated CP 93129‐induced decrease in rabphilin 3A and synapsin 1 phosphorylation. Application of cAMP‐dependent protein kinase inhibitor KT5720 caused a prominent synaptic depression in NAc neurons of mice with a history of cocaine exposure. Our results reveal a novel 5‐HT1B receptor‐mediated LTD in the NAc and suggest that cocaine exposure may result in elevated phosphorylation of presynaptic proteins involved in regulating glutamate release, which counteracts the presynaptic depressant effects of 5‐HT1B receptors and thereby impairs the induction of LTD by 5‐HT.  相似文献   

12.
The biogenic amine serotonin ( 5‐hydroxytryptamine, 5‐HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G‐protein‐coupled receptors. Five 5‐HT receptor subtypes have been reported in Drosophila that share high similarity with mammalian 5‐HT1A, 5‐HT1B, 5‐HT2A, 5‐HT2B, and 5‐HT7 receptors. We isolated a cDNA (Pr5‐HT8) from larval Pieris rapae, which shares relatively low similarity to the known 5‐HT receptor classes. After heterologous expression in HEK293 cells, Pr5‐HT8 mediated increased [Ca2+]i in response to low concentrations (< 10 nM) of 5‐HT. The receptor did not affect [cAMP]i even at high concentrations (> 10 μM) of 5‐HT. Dopamine, octopamine, and tyramine did not influence receptor signaling. Pr5‐HT8 was also activated by various 5‐HT receptor agonists including 5‐methoxytryptamine, (±)‐8‐Hydroxy‐2‐(dipropylamino) tetralin, and 5‐carboxamidotryptamine. Methiothepin, a non‐selective 5‐HT receptor antagonist, activated Pr5‐HT8. WAY 10635, a 5‐HT1A antagonist, but not SB‐269970, SB‐216641, or RS‐127445, inhibited 5‐HT‐induced [Ca2+]i increases. We infer that Pr5‐HT8 represents the first recognized member of a novel 5‐HT receptor class with a unique pharmacological profile. We found orthologs of Pr5‐HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee or parasitoid wasps. This is likely to be an invertebrate‐specific receptor because there were no similar receptors in mammals.

  相似文献   


13.
Physiological characteristics of serotonin (5-hydroxytryptamine, 5HT) transport through the platelet membrane was investigated in Wistar rats with our recently developed method permitting repetitive measurements of transporter kinetics in individual animals. Full kinetic analysis in the population of 91 animals revealed Michaelis constant (Km) of 0.158±0.025 μM and maximal velocity (Vmax) of 5HT uptake of 225±32 pmol per 108platelets min−1 (mean±S.D.). Both kinetic parameters demonstrated normal distribution curves, which for Vmax were slightly skewed toward higher than average values. No gender effect was shown in frequency distributions, mean values and variability of kinetic parameters. A significant intraindividual correlation between kinetic parameters was found suggesting compensation at the level of the plasma membrane. Kinetic parameters were not influenced by age (until the middle age) or annual cycle (under laboratory conditions) and were shown to be fairly stable in time, supporting the view that platelet 5HT transport kinetics could be a useful biological trait marker.  相似文献   

14.
Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self‐administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self‐administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self‐administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol .  相似文献   

15.
16.
BDNF is thought to provide critical trophic support for serotonin neurons. In order to determine postnatal effects of BDNF on the serotonin system, we examined a line of conditional mutant mice that have normal brain content of BDNF during prenatal development but later depletion of this neurotrophin in the postnatal period. These mice show a behavioral phenotype that suggests serotonin dysregulation. However, as shown here, the presynaptic serotonin system in the adult conditional mutant mice appeared surprisingly normal from histological, biochemical, and electrophysiological perspectives. By contrast, a dramatic and unexpected postsynaptic 5‐HT2A deficit in the mutant mice was found. Electrophysiologically, serotonin neurons appeared near normal except, most notably, for an almost complete absence of expected 5‐HT2A‐mediated glutamate and GABA postsynaptic potentials normally displayed by these neurons. Further analysis showed that BDNF mutants had much reduced 5‐HT2A receptor protein in dorsal raphe nucleus and a similar deficit in prefrontal cortex, a region that normally shows a high level of 5‐HT2A receptor expression. Recordings in prefrontal slice showed a marked deficit in 5‐HT2A‐mediated excitatory postsynaptic currents, similar to that seen in the dorsal raphe. These findings suggest that postnatal levels of BDNF play a relatively limited role in maintaining presynaptic aspects of the serotonin system and a much greater role in maintaining postsynaptic 5‐HT2A and possibly other receptors than previously suspected. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

17.
Chronic in vivo imaging studies of the brain require a labeling method that is fast, long‐lasting, efficient, nontoxic, and cell‐type specific. Over the last decade, adeno‐associated virus (AAV) has been used to stably express fluorescent proteins in neurons invivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second‐strand DNA synthesis, which delays peak transgene expression. The development of double‐stranded AAV (dsAAV) vectors has overcome this limitation, allowing rapid transgene expression. Here, we have injected different serotypes (1, 2, 6, 7, 8, and 9) of a dsAAV vector carrying the green fluorescent protein (GFP) gene into the developing and adult mouse visual cortex and characterized its expression. We observed labeling of both neurons and astrocytes with serotype‐specific tropism. dsAAV‐GFP labeling showed high levels of neuronal GFP expression as early as 2 days postinjection and as long as a month, surpassing conventional AAV's onset of expression and matching its longevity. Neurons labeled with dsAAV‐GFP appeared structurally and electrophysiologically identical to nonlabeled neurons, suggesting that dsAAV‐GFP is neither cytotoxic nor alters normal neuronal function. We also demonstrated that dsAAV‐labeled cells can be imaged with subcellular resolution in vivo over multiple days. We conclude that dsAAV is an excellent vector for rapid labeling and long‐term in vivo imaging studies of astrocytes and neurons on the single cell level within the developing and adult visual cortex. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

18.
Aberrant serotonergic neurotransmission in the brain is considered at the core of the pathophysiological mechanisms involved in neuropsychiatric disorders. Gene by environment interactions contribute to the development of depression and involve modulation of the availability and functional activity of the serotonin transporter (SERT). Using behavioral and in vivo electrophysiological approaches together with biochemical, molecular‐biological and molecular imaging tools we establish Flotillin‐1 (Flot1) as a novel protein interacting with SERT and demonstrate its involvement in the response to chronic corticosterone (CORT) treatment. We show that genetic Flot1 depletion augments chronic CORT‐induced behavioral despair and describe concomitant alterations in the expression of SERT, activity of serotonergic neurons and alterations of the glucocorticoid receptor transport machinery. Hence, we propose a role for Flot1 as modulatory factor for the depressogenic consequences of chronic CORT exposure and suggest Flotillin‐1‐dependent regulation of SERT expression and activity of serotonergic neurotransmission at the core of the molecular mechanisms involved.  相似文献   

19.
3,4‐Methylenedioxymethamphetamine (MDMA, ecstasy) use may have long‐term neurotoxic effects. In this study, positron emission tomography with the tracer alpha‐[11C]methyl‐l ‐tryptophan (11C‐AMT) was used to compare human brain serotonin (5‐HT) synthesis capacity in 17 currently drug‐free MDMA polydrug users with that in 18 healthy matched controls. Gender differences and associations between regional 11C‐AMT trapping and characteristics of MDMA use were also examined. MDMA polydrug users exhibited lower normalized 11C‐AMT trapping in pre‐frontal, orbitofrontal, and parietal regions, relative to controls. These differences were more widespread in males than in females. Increased normalized 11C‐AMT trapping in MDMA users was also observed, mainly in the brainstem and in frontal and temporal areas. Normalized 11C‐AMT trapping in the brainstem and pre‐frontal regions correlated positively and negatively, respectively, with greater lifetime accumulated MDMA use, longer durations of MDMA use, and shorter time elapsed since the last MDMA use. Although the possibility of pre‐existing 5‐HT alterations pre‐disposing people to use MDMA cannot be ruled out, regionally decreased 5‐HT synthesis capacity in the forebrain could be interpreted as neurotoxicity of MDMA on distal (frontal) brain regions. On the other hand, increased 5‐HT synthesis capacity in the raphe and adjacent areas could be due to compensatory mechanisms.

  相似文献   


20.
Clearance rates for serotonin (5-HT) in heterozygote (+/-) and homozygote (-/-) serotonin transporter (5-HTT) knockout (KO) mice have not been determined in vivo. Moreover, the effect of selective serotonin reuptake inhibitors (SSRIs) on 5-HT clearance in these mice has not been examined. In this study, the rate of clearance of exogenously applied 5-HT was measured in the CA3 region of the hippocampus of anesthetized mice using high-speed chronoamperometry. Compared with wild-type mice, the maximal rate of 5-HT clearance from extracellular fluid (ECF) was decreased in heterozygotes and more markedly so in KO mice. Heterozygote mice were more sensitive to the 5-HT uptake inhibitor, fluvoxamine, resulting in longer clearance times for 5-HT than in wild-type mice; as expected, the KO mice were completely unresponsive to fluvoxamine. There were no associated changes in norepinephrine transporter density, nor was there an effect of the norepinephrine uptake inhibitor, desipramine, on 5-HT clearance in any genotype. Thus, adaptive changes in the norepinephrine transport system do not occur in the CA3 region of hippocampus as a consequence of 5-HTT KO. These data highlight the potential of the heterozygote 5-HTT mutant mice to model the dynamic in vivo consequences of the human 5-HTT polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号