首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The present study describes modification of asparagine–glycine–arginine (NGR) peptide at N‐terminally and C‐terminally by introduction of a tridentate chelating scaffold via click chemistry reaction. The N‐terminal and C‐terminal modified peptides were radiometalated with [99mTc(CO)3]+ precursor. The influence of these moieties at the two termini on the targeting properties of NGR peptide was determined by in vitro cell uptake studies and in vivo biodistribution studies. The two radiolabeled constructs did not exhibit any significant variation in uptake in murine melanoma B16F10 cells during in vitro studies. In vivo studies revealed nearly similar tumor uptake of N‐terminally modified peptide construct 5 and C‐terminally construct 6 at 2 h p.i. (1.9 ± 0.1 vs 2.4 ± 0.2% ID/g, respectively). The tumor‐to‐blood (T/B) and tumor‐to‐liver (T/L) ratios of the two radiometalated peptides were also quite similar. The two constructs cleared from all the major organs (heart, lungs, spleen, stomach, and blood) at 4 h p.i. (<1% ID/g). Blocking studies carried out by coinjection of cCNGRC peptide led to approximately 50% reduction in the tumor uptake at 2 h p.i. This work thus illustrates the possibility of convenient modification/radiometalation of NGR peptide at either N‐ or C‐terminus without hampering tumor targeting and pharmacokinetics.  相似文献   

2.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
We report in this paper that the binding of coumarin 6 (C6) to DNA can be tuned by complexing it with host structures, viz. β‐cyclodextrin (β‐CD) and C‐hexylpyrogallol‐4‐arene (C‐HPA). Because host molecules are used as carriers of small molecules onto target sites, the exposed part of the guest molecule needs to be found out, and the relationship between the host : guest ratio and the mode of binding with the target macromolecule, that is, the DNA needs to be analyzed, in order to comprehend the preferred binding moiety and tune the binding. In this paper, the formation of the inclusion complex of C6 with β‐CD and with C‐HPA is studied by UV‐visible, fluorescence, 2D rotating‐frame nuclear Overhauser effect correlation spectroscopy and diffusion‐ordered spectroscopy nuclear magnetic resonance spectra and molecular modeling. C6 forms a 1:1 complex with β‐CD and a 1:2 complex with C‐HPA. The studies on the protonation of C6 in the presence and the absence of the host molecules suggest that the chromone part of C6 is outside the β‐CD molecule, whereas it is fully covered by C‐HPA. The binding of C6 with calf thymus DNA (ctDNA) occurs through intercalation and hydrogen bonding, and the host–guest structures remain intact on binding with ctDNA. The oxygens of the C6 molecules are exposed when inside the host molecules and aid in the hydrogen bonding with DNA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This study was focused on developing catalytically active β‐lactamase enzyme molecules that have target‐recognizing sites built within their scaffold. Using phage‐display approach, nine libraries were constructed by inserting the randomized linear or cysteine‐constrained heptapeptides in the five different loops on the outer surface of P99 β‐lactamase molecule. The pIII signal peptide of Sec‐pathway was employed for a periplasmic translocation of the β‐lactamase fusion protein, which we found more efficient than the DsbA signal peptide of SRP‐pathway. The randomized heptapeptide loops replaced native amino acids between positions 34Y‐37K, 238M‐246A, 275N‐280A, 305A‐311S, or 329I‐334I of the P99 β‐lactamase molecules for generating the loop‐1 to ‐5 libraries, respectively. The diversity of each loop library was judged by counting the primary and β‐lactamase‐active clones. The linear peptide inserts in the loop‐2 library showed the maximum number of the β‐lactamase‐active clones, followed by the loop‐5, loop‐3, and loop‐4. The insertion of the cysteine‐constrained loops exhibited a dramatic loss of the enzyme‐active β‐lactamase clones. The complexity of the loop‐2 linear library, as determined by the frequency and diversity of amino acid distributions in the randomized region, appears consistent with the standards of other types of phage display library systems. The selection of the loop‐2 linear library on streptavidin protein as a test target identified several β‐lactamase clones that specifically bound to streptavidin. In conclusion, this study identified the suitability of the loop‐2 of P99 β‐lactamase for constructing a phage‐display library of the β‐lactamase enzyme‐active molecules that can be selected against a target. This is an enabling step in our long‐term goal of developing bifunctional β‐lactamase molecules against cancer‐specific targets for enzyme prodrug therapy of cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Allogeneic haematopoietic stem cell transplantation (allo‐HSCT) is the only curative method in treating haematologic malignant diseases. Graft‐versus‐host disease (GVHD) is a common complication post–allo‐HSCT, which can be life‐threatening. Mesenchymal stem cells (MSCs) as an adult stem cell with immunoregulatory function have demonstrated efficacy in steroid resistant acute GVHD (aGVHD). However, the outcome of aGVHD treated with MSCs in clinical trials varied and its underlying mechanism is still unclear. TGF‐β1 is a potent cytokine, which plays a key role in immunoregulation. In the present study, we firstly transduced the lentivirus vector containing TGF‐β1 gene with mouse bone marrow‐derived MSCs. Then, we investigated the immunosuppressive effect of TGF‐β1 gene‐modified MSCs on lymphocytes in vitro and its preventive and therapeutical effects on murine aGVHD model in vivo. Murine MSC was successfully isolated and identified. TGF‐β1 was efficiently transduced into mouse MSCs, and high level TGF‐β1 was detected. MSC‐TGF‐β1 shared the same morphology and immunotypic features of normal MSC. In vitro, MSC‐TGF‐β1 showed enhanced immunosuppressive function on lymphocyte proliferation. In vivo, MSC‐TGF‐β1 showed enhanced amelioration on the severity of aGVHD both in prophylactic and therapeutic murine models. Finally, the macrophages (MØs) derived from MSC‐TGF‐β1–treated mice showed a remarkably increasing of anti‐inflammatory M2‐like phenotype. Furthermore, the differentiation of CD4+ CD25+ Foxp3+ Treg cells was significantly increased in MSC‐TGF‐β1–treated group. Taken together, we proved that MSC‐TGF‐β1 showed enhanced alleviation of aGVHD severity in mice by skewing macrophages into a M2 like phenotype or increasing the proportion of Treg cells, which opens a new frontier in the treatment of aGVHD.  相似文献   

6.
7.
An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27‐hydroxycholesterol (27‐OH) and 24‐hydroxycholesterol (24‐OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK‐N‐BE human neuroblastoma cells with patho‐physiologically relevant amounts of 27‐OH and 24‐OH showed that both oxysterols induce a net synthesis of Aβ1‐42 by up‐regulating expression levels of amyloid precursor protein and β‐secretase, as well as the β‐secretase activity. Interestingly, cell pretreatment with N‐acetyl‐cysteine (NAC) fully prevented the enhancement of β‐amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β‐amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols‐induced Aβ toxic peptide accumulation in the brain.  相似文献   

8.
9.
We report a data‐dependent neutral‐loss‐driven MS3 acquisition to enhance, in addition to abundant Michael adducts, the detection of Schiff‐base adducts of proteins and 4‐hydroxy‐2‐nonenal, a reactive end product of lipid peroxidation. In vitro modification of cytochrome c oxidase, a mitochondrial protein complex, was used as a model to evaluate the method. The technique allowed for a confident validation of modification sites and also identified a Schiff‐base adduct in subunit Vb of the protein complex.  相似文献   

10.
11.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist‐induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by IL‐1β. However, the mechanisms underlying IL‐1β‐induced cPLA2 expression and PGE2 synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. IL‐1β‐induced cPLA2 protein and mRNA expression, PGE2 production, or phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which was attenuated by pretreatment with the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs of MEK1, p42, p38, and JNK2. IL‐1β‐induced cPLA2 expression was also inhibited by pretreatment with a NF‐κB inhibitor, helenalin or transfection with siRNA of NIK, IKKα, or IKKβ. IL‐β‐induced NF‐κB translocation was blocked by pretreatment with helenalin, but not U0126, SB202190, and SP600125. In addition, transfection with p300 siRNA blocked cPLA2 expression induced by IL‐1β. Moreover, p300 was associated with the cPLA2 promoter, which was dynamically linked to histone H4 acetylation stimulated by IL‐1β. These results suggest that in HTSMCs, activation of MAPKs, NF‐κB, and p300 are essential for IL‐1β‐induced cPLA2 expression and PGE2 secretion. J. Cell. Biochem. 109: 1045–1056, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.

  相似文献   


13.
Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell‐derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon‐like peptide (GLP)‐1 analogue, is known to promote insulin secretion and β‐cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin‐m5f β‐cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross‐talk model. Methyl‐β‐cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N‐éthylmaleimide‐sensitive‐factor Attachment protein Receptor (SNARE)‐dependent exocytosis. Cytokines induced a two‐fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two‐fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD‐treated cells showed similar patterns. Cells pre‐treated by saturating concentration of the GLP‐1r antagonist exendin (9‐39), showed a partial abolishment of the liraglutide‐driven insulin secretion and liraglutide‐decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP‐1r‐dependent and ‐independent pathways. Our results confirm an integrative β‐cell response to GLP‐1 that targets receptor‐mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation‐driven procoagulant events.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号