首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the transport of contaminants associated with river-derived suspended particles in the Salton Sea, California, large volume water samples were collected in transects established along the three major rivers emptying into the Salton Sea in fall 2001. Rivers in this area carry significant aqueous and particulate contaminant loads derived from irrigation water associated with the extensive agricultural activity, as well as wastewater from small and large municipalities. A variety of inorganic constituents, including trace metals, nutrients, and organic carbon were analyzed on suspended material isolated from water samples collected at upriver, near-shore, and off-shore sites established on the Alamo, New, and Whitewater rivers. Concentration patterns showed expected trends, with river-borne metals becoming diluted by organic-rich algal particles of lacustrine origin in off-shore stations. More soluble metals, such as cadmium, copper, and zinc showed a more even distribution between sites in the rivers and off-shore in the lake basin. General distributional trends of trace elements between particulate and aqueous forms were discerned by combining metal concentration data for particulates from this study with historical aqueous metals data. Highly insoluble trace metals, such as iron and aluminum, occurred almost entirely in the particulate phase, while major cations and approximately 95% of selenium were transported in the soluble phase. Evidence for greater reducing conditions in the New compared to the Alamo River was provided by the greater proportion of reduced (soluble) manganese in the New River. Evidence of bioconcentration of selenium and arsenic within the lake by algae was provided by calculating “enrichment” concentration ratios from metal concentrations on the algal-derived particulate samples and the off-shore sites. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005 Roy A. Schroeder—Retired.  相似文献   

2.
The Salton Sea is a hypereutrophic, saline lake in the desert of southern California. Like many lakes, the primary productivity of the Sea is limited by phosphorus. However, unlike most lakes, the release of P from the sediments is not controlled by the reductive dissolution of Fe(III)-oxide minerals. Most of the iron in the sediments of the Salton Sea is present as Fe(II)-sulfides and silicates. Rather, the sediments are dominated by calcite which is actively precipitating due to alkalinity production via sulfate reduction reactions. We hypothesized that calcite could be an important sink for phosphorus released from the decomposing organic matter. In this work we evaluated the potential for phosphate to coprecipitate with calcite formed in simulated Salton Sea sediment pore water. At calcite precipitation levels and P concentrations typical for the Salton Sea pore water, coprecipitation of P removed 82–100% of the dissolved phosphorus. The amount of P incorporated into the calcite was independent of temperature. The results of this work indicate that the internal loading of P within the Salton Sea is being controlled by calcite precipitation. Management of external P loading should have an immediate impact on reducing algae blooms in the Salton Sea. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife, and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

3.
The Salton Sea (Sea) is a eutrophic to hypereutrophic lake characterized by high nutrient concentrations, low water clarity, and high biological productivity. Based on dissolved phosphorus (P) and nitrogen (N) concentrations and N:P ratios, P is typically the limiting nutrient in the Sea and, therefore, should be the primary nutrient of concern when considering management efforts. Flows in the major tributaries to the Sea have been measured since 1965, whereas total P (TP) concentrations were only measured intermittently by various agencies since 1968. These data were used to estimate annual P loading from 1965 to 2002. Annual loads have increased steadily from ∼940,000 kg around 1968 to ∼1,450,000 kg in 2002 (∼55% increase), primarily a result of increased TP concentrations and loads in the New River. Although the eutrophic condition of the Salton Sea is of great concern, only limited nutrient data are available for the Sea. It is difficult to determine whether the eutrophic state of the Sea has degraded or possibly even improved slightly in response to the change in P loading because of variability in the data and changes in the sampling and analytical methodologies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

4.
Characteristics and contaminants of the Salton Sea sediments   总被引:4,自引:4,他引:0  
This was the first comprehensive study to evaluate the distribution of sediment types and sediment contaminants throughout the Salton Sea. The sampling effort encompassed the entire Sea plus its three main tributaries, and included collection of sediment samples from 73 locations. The agricultural runoff that keeps the Sea alive is loaded with salts, pesticides, selenium, and other metals. Metals and metalloids found at elevated concentrations and of potential ecological concern were cadmium, copper, molybdenum, nickel, zinc, and selenium. The most significant metalloid of concern was selenium, which was limited to the upper 30 cm of sediment. There did not appear to be any strong correlation between the sand, silt, or clay content with the areas of elevated metals and metalloids. Acetone, 2-butanone, and carbon disulfide were also widespread but appeared to be associated with natural biological processes within the sediments. One of the most significant findings of this study was the absence of elevated concentrations of organic chemicals commonly used in agriculture earlier this century, such as dichlorodiphenyltrichloroethane (DDT).  相似文献   

5.
The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001–2002. Three sampling stations—upriver, river mouth, and offshore—were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March–April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940–3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment pesticide concentrations were more sporadic than detected aqueous concentrations, seasonal trends were similar to those for dissolved concentrations. Generally, the pesticides detected on suspended sediments were the same as those on the bed sediments, and concentrations were similar, especially at the Alamo River upriver site. With a few exceptions, pesticides were not detected in suspended or bed sediments from the off-shore sites. The partitioning of pesticides between water and sediment was not predictable from solely the physical–chemical properties of individual pesticide compounds, but appear to be a complicated function of the quantity of pesticide applied in the watershed, residence time of sediments in the water, and compound solubility and hydrophobicity. Sediment concentrations of most pesticides were found to be 100–1,000 times lower than the low-effects levels determined in human health risk assessment studies. However, maximum concentrations of chlorpyrifos on suspended sediments were approximately half the low-effects level, suggesting the need for further sediment characterization of lake sediments proximate to riverine inputs. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

6.
The Salton Sea, a hypersaline lake located in Southern California, is a major habitat for migratory waterfowl, including endangered species, recently threatened by selenium toxicity. Selenium is both an essential micronutrient and a contaminant and its speciation and cycling are driven by microbial activity. In the absence of oxygen, microorganisms can couple the oxidation of organic matter with the reduction of soluble selenate and selenite to elemental selenium. In order to better understand and quantify selenium cycling and selenium transfer between water and underlying sediments in the Salton Sea, we measured the maximum potential selenate reduction rates (R max) and selenate adsorption isotherms in sediments collected from seven littoral locations in July 2011. We also measured salinity, organic carbon, nitrogen, and elemental selenium content and the abundance of selenate-reducing prokaryotes at each site. Our results showed a high potential for selenate reduction and limited selenate adsorption in all studied sites. Maximum potential selenate reduction rates were affected by sediment Corg content. We showed that selenate reduction potential of Salton Sea sediments far outweighs current dissolved inputs to the lake. Selenate reduction is thus a likely driver for selenium removal from the lake’s water and selenate retention in littoral sediments of the Salton Sea.  相似文献   

7.
The Salton Sea is the largest lake, on a surface area basis, in California (939 km2). Although saline (>44 g/l) and shallow (mean depth approximately 9.7 m), it provides valuable habitat for a number of endangered species. The distribution of sediments and their properties within the Salton Sea are thought to have significant influence on benthic ecology and water quality. Sediment properties and their distribution were quantified and compared with predicted distributions using several sediment distribution models. Sediment samples (n = 90) were collected using a regular staggered-start sampling grid and analyzed for water content, organic carbon (C), calcium carbonate, total nitrogen (N), total phosphorus (P), organic phosphorus, and other properties. Water content, total N, and total and organic P concentrations were all highly correlated with organic C content. The organic C concentration showed a non-linear increase with depth, with low organic C contents (typically 1–2%) present in sediments found in depths up to 9 m, followed by a strong increase in organic C at greater depths (to about 12% at 15 m depth). The models of Hakanson, Rowan et al., Blais and Kalff, and Carper and Bachmann yielded very different predicted critical depths for accumulation (10.5–22.8 m) and areas of accumulation (0–49.5%). Hakanson’s dynamic ratio model more reasonably reproduced the observed zone of elevated organic C concentrations in the Salton Sea than either exposure- or slope-based equations. Wave theory calculations suggest that strong winds occurring less than 1% of the time are sufficient to minimize accumulation of organic matter in sediments that lie at depths less than 9 m in this system. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

8.
Geochemistry of iron in the Salton Sea,California   总被引:1,自引:0,他引:1  
The Salton Sea is a large, saline, closed-basin lake in southern California. The Sea receives agricultural runoff and, to a lesser extent, municipal wastewater that is high in nutrients, salt, and suspended solids. High sulfate concentrations (4× higher than that of the ocean), coupled with warm temperatures and low-redox potentials present during much of the year, result in extensive sulfate reduction and hydrogen sulfide production. Hydrogen sulfide formation may have a dramatic effect on the iron (Fe) geochemistry in the Sea. We hypothesized that the Fe(II)-sulfide minerals should dominate the iron mineralogy of the sediments, and plans to increase hypolimnetic aeration would increase the amount of Fe(III)-oxides, which are strong adsorbers of phosphate. Sequential chemical extractions were used to differentiate iron mineralogy in the lake sediments and suspended solids from the tributary rivers. Iron in the river-borne suspended solids was mainly associated with structural iron within silicate clays (70%) and ferric oxides (30%). The iron in the bottom sediments of the lake was associated with silicate minerals (71% of the total iron in the sediments), framboidal pyrite (10%), greigite (11%), and amorphous FeS (5%). The ferric oxide fraction was <4% of the total iron in these anaerobic sediments. The morphological characteristics of the framboidal pyrite as determined using SEM suggest that it formed within the water column and experiences some changes in local redox conditions, probably associated with alternating summer anoxia and the well-mixed and generally well-aerated conditions found during the winter. The prevalence of Fe(II)-sulfide minerals in the sediments and the lack of Fe(III)-oxide minerals suggest that the classic model of P-retention by Fe(III)-oxides would not be operating in this lake, at least during anoxic summer conditions. Aeration of the hypolimnion could affect the internal loading of P by changing the relative amounts of Fe(II)-sulfides and Fe(III)-oxides at the sediment/water interface. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

9.
The Salton Sea is a highly eutrophic, hypersaline terminal lake that receives inflows primarily from agricultural drainages in the Imperial and Coachella valleys. Impending reductions in water inflow at Salton Sea may concentrate existing contaminants which have been a concern for many years, and result in higher exposure to birds. Thus, waterbird eggs were collected and analyzed in 2004 and compared with residue concentrations from earlier years; these data provide a base for future comparisons. Eggs from four waterbird species (black-crowned night-heron [Nycticorax nycticorax], great egret [Ardea alba], black-necked stilt [Himantopus mexicanus], and American avocet [Recurvirostra Americana]) were collected. Eggs were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), metals, and trace elements, with current results compared to those reported for eggs collected from the same species and others during 1985–1993. The two contaminants of primary concern were p,p′-DDE (DDE) and selenium. DDE concentrations in night-heron and great egret eggs collected from the northwest corner of Salton Sea (Whitewater River delta) decreased 91 and 95%, respectively, by 2004, with a concomitant increase in eggshell thickness for both species. Decreases in bird egg DDE levels paralleled those in tissues of tilapia (Oreochromis mossambicus × O. urolepis), an important prey species for herons and egrets. Despite most nests of night-herons and great egrets failing in 2004 due to predation, predicted reproductive effects based on DDE concentrations in eggs were low or negligible for these species. The 2004 DDE findings were in dramatic contrast to those in the past decade, and included an 81% decrease in black-necked stilt eggs, although concentrations were lower historically than those reported in night-herons and egrets. Selenium concentrations in black-necked stilt eggs from the southeast corner of Salton Sea (Davis Road) were similar in 1993 and 2004, with 4.5–7.6% of the clutches estimated to be selenium impaired during both time periods. Because of present selenium concentrations and future reduced water inflow, the stilt population is of special concern. Between 1992 and 1993 and 2004 selenium in night-heron and great egret eggs from the Whitewater River delta at the north end of the Sea decreased by 81 and 55%, respectively. None of the night-heron or egret eggs collected in 2004 contained selenium concentrations above the lowest reported effect concentration (6.0 μg/g dw). Reasons for selenium decreases in night-heron and egret eggs are unknown. Other contaminants evaluated in 2004 were all below known effect concentrations. However, in spite of generally low contaminant levels in 2004, the nesting populations of night-herons and great egrets at Salton Sea were greatly reduced from earlier years and snowy egrets (Egretta thula) were not found nesting. Other factors that include predation, reduced water level, diminished roost and nest sites, increased salinity, eutrophication, and reduced fish populations can certainly influence avian populations. Future monitoring, to validate predicted responses by birds, other organisms, and contaminant loadings associated with reduced water inflows, together with adaptive management should be the operational framework at the Salton Sea. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

10.
The Colorado River Quantification Settlement Agreement (QSA) of 2003 gives urgency for studying the environmental consequences of the cessation of mitigation water transfers to the Salton Sea. The Salton Sea Stochastic Simulation Model (S4M) is a spatially-driven, stochastic, simulation model representing water flow, i.e., water volume and quantity of Total Dissolved Solids and Phosphorus, in the Lower Colorado River Basin, Mexicali Valley, and the Salton Sea Basin. The S4M is formulated as a compartment model based on difference equations with a daily time step using STELLA® v8.0. The model was developed, evaluated, and applied to simulate the potential effects on the population dynamics, i.e., natality, mortality, emigration, and immigration, of selected fish and avian species at the Salton Sea under two different scenarios: 1) QSA water transfers to Sea end after 2017 and 2) QSA water transfers continue at 2017 levels. Oneway ANOVAs were performed for the water quantity, water quality, and selected variables involving the fish and bird population dynamics under the two water transfer scenarios. Results indicate that if cessation of the QSA water transfers after 2017 occurs, then fish and bird populations will be significantly (P < 0.05) and negatively impacted by year 2024, compared to continuing the QSA water transfers. Further, if no restoration action is taken in stabilizing the Sea elevation and reducing salinity but continuing QSA water transfers (at 2017 levels), i.e., scenario 2; results indicate that Salton Sea avian and fish population dynamics will be negatively impacted, although somewhat delayed.  相似文献   

11.
The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (44000 mg l–1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr–1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.  相似文献   

12.
A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including and DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

13.
Ammonium perchlorate, a component of rocket fuel, entered Lake Mead through drainage and shallow groundwater in the Las Vegas Valley, Nevada, and is now found in the lower Colorado River from Lake Mead to the international boundary with Mexico. Perchlorate is a threat to human health through reduction of thyroid hormone production. Perchlorate has been found in water throughout the lower Colorado system and in crops in the California’s Imperial Valley, as well as in several other states, but it has not previously been included in investigations of the Salton Sea. Because perchlorate behaves conservatively in the Colorado River, it was postulated that it could be accumulating at high levels along with other salts in the Salton Sea. Results show that perchlorate is not accumulating in the Sea, although it is present in tributaries to the Sea at levels similar to those found in the Colorado River. Bacterial reduction of perchlorate is the most likely explanation for the observed results. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

14.
15.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

16.
Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25–50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17–63% and increase Secchi depths (SD) by 38–97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70–90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005.  相似文献   

17.
The interaction of water basins and watercourses with the catchment surface in the Ob’-Irtysh catchment area is considered. The results of long-term observation of water, suspended matter, and bottom sediments in different segments of the watercourse are summarized and compared. The interaction of major and minor tributaries, natural and artificial water reservoirs with the catchment area is discussed in the context of industrial discharge of heavy metals. The areal distribution of metals along the Ob’ River is heterogeneous. The chemical composition of water in the upper reaches of Ob’ is determined by mercury and complex ore shows; in the middle and lower reaches, by catchments of major tributaries: Tom, Chulym, and, particularly, Irtysh. The Novosibirsk Reservoir purifies the water from coarse suspensions. Wetlands of the catchment enrich the main watercourse in metals and organic matter. Anthropogenic pollution from large cities (Novosibirsk, Tomsk, Surgut, and Nizhnevartovsk) additionally contaminate the watercourse. With abundance of organic matter, heavy metals are accumulated in bottom sediments and, as a consequence, in tissues of predatory fish. The results of long-term studies indicate that oil products and phenols are the main hazard for the middle and lower Ob’ River, especially at elevated water temperatures.  相似文献   

18.
Since the first North Sea Conference (1984, Bremen), all countries bordering the North Sea made commitments to reduce discharge of hazardous substances into the North Sea. From Belgium and The Netherlands, large reductions (upto 90) in heavy metal emissions from land-based sources have been reported between 1985 and 2000. Recently, some studies in the Western Scheldt estuary (WS) have shown that total metal concentration in the water, sediments and suspended particles have decreased compared to levels in the 70s. However, data on aquatic organisms is still very limited and it is therefore difficult to confirm whether the reductions in pollution input and generally improving water quality in the WS have a corresponding impact on the levels of heavy metals in aquatic organisms. The current study measured metal concentrations in the soft tissues of mussels, Mytilus edulis (known to be good indicators of environmental metal pollution) during the period 1996–2002. Spatial (salinity and pollution gradients), temporal and seasonal variations were also studied. Results showed a down-stream decreasing trend for the metals studied (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) during all sampling campaigns. There was also a significant seasonal effect on tissue metal concentrations, with a peak observed around spring in both WS and the nearby less polluted Eastern Scheldt (ES). On temporal trends, a clear drop of metals in mussels was observed in the early 80s coinciding with the start of the efforts to reduce chemical pollution input into the North Sea. Since those early reductions, metal concentrations in mussels generally remained unchanged upto mid 90s. However, in recent times metal concentration in mussels have increased significantly, for example Cd in 2002 was almost 10 times the values in 1983 and similar to levels seen during the peak in the 70s. Other metals also increased in the 90s also reaching levels seen in the 70s. As there is no indication of recent increase in metal input into the estuary, we suggest that increased metal concentrations observed in mussels in recent years especially in the upper estuary are most likely a result of changes in physical and chemical speciation and metal bioavailability. Such changes may be caused by changes in some water quality parameters in the estuary (i.e. increased dissolved oxygen, concentration of organic matter), resulting in conditions that favour releases of sediment-bound metals into the water column. The relationship between metal content and season showed very similar annual profiles in the polluted WS and less polluted ES. Thus, seasonal variations in metal concentrations appear to be largely controlled by biological processes, while total body burdens are dependent on environmental levels and bioavailability.  相似文献   

19.
Nutrients, conductivity and other physical and chemical parameters were measured seasonally in the main channel and in tributaries of the Salado River basin during the period March 1997–June 1999. The sampling began in a low water period and later included flood events. High water events were associated with high proportions of allochthonous compounds (polyphenols, suspended solids and organic matter). Nutrients and conductivity were related to hydrological conditions and different land uses in the catchment. A relationship was found between the land-use and nutrient concentrations due to the inflow of diffuse sources from agricultural lands. High nutrient concentrations and conductivity recorded in the headwaters were, respectively, related to the intensive agriculture in this area and the inflow of saline groundwater, drained by canals from endorheic basin to the main channel. Their effects on the middle and lower reaches were related to the discharge and inputs of other sub-catchments. Nutrients, sulphates, alkalinity and conductivity declined downstream towards the river mouth. The consequences for the plankton community of these spatio-temporal changes in the chemical characteristics are discussed. The heterogeneity of the Salado River is related to seasonality, land use and the geomorphological features of the basin.  相似文献   

20.
We investigated the relationships between major nutrients (C, H, N, and P) and trace metals (Cu, Fe, and Mn) in seston samples from ten lake/lagoon systems in southern Brazil. The systems were characterized by a diverse set of limnological features, including surface areas from 10−1 to 102 km2, water color, a CDOM(440), from 1.4 to 12.9 m−1, and electrical conductivity from 50 to 100 000 μS cm−1. Seston concentrations also varied a great deal, 32-fold. The elemental (C: N, C: P, and N: P) and C: Chl-a ratios in the seston samples indicated, however, common features; i.e., most of the lakes were N-and/or P-limited, and the seston organic fraction was composed of nonvascular plants (e.g., phytoplankton). Our intersystem comparison revealed that the relative content of organic matter in seston and seston concentrations in lake water tended to correlate positively and negatively, respectively, with trace metal concentrations across the seston samples. Possible influences of elemental and C: Chl-a ratios on the association of metals with seston matrices, although theoretically important, were only partially evidenced here; positive correlations were found between C: N and also Org-H: N ratios with trace metal concentrations. We speculate that such results could be circumstantial, as the nature of the seston matrices appeared to be very similar among them. This hypothesis should thus be the theme of further research. In short, our findings suggest that C: N and Org-H: N ratios as well as the relative content of major nutrients in seston and seston concentrations can be importantly related to trace metal concentrations in seston samples. In discussing the results, however, we consider that metal-seston relationships depend on a variety of physical, chemical, and biological factors and/or variables other than those measured in this study, which could also contribute for defining and explaining variations in metal-seston concentrations in lake ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号