首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the high Lyme borreliosis incidence in Alsace, in northeastern France, we investigated in 2003-2004 three cantons in this region in order to determine the density of Ixodes ricinus ticks infected by Borrelia burgdorferi sensu lato and Anaplasmataceae. The peak density of nymphs infected by B. burgdorferi sensu lato at Munster and Guebwiller, where the disease incidence was high, was among the highest reported in Europe (105 and 114 per 100 m(2), respectively). In contrast, the peak density of infected nymphs was low in the canton of Dannemarie (5/100 m(2)), where the disease incidence was low. The two main species detected in ticks were Borrelia afzelii, more frequent in nymphs, and Borrelia garinii, more frequent in adult ticks. The rates of tick infection by Anaplasma phagocytophilum were 0.4% and 1.2% in nymphs and adults, respectively.  相似文献   

2.
The pathogen Borrelia burgdorferi causes Lyme Borreliosis in human and animals world-wide. In Europe the pathogen is transmitted to the host by the vector Ixodes ricinus. The nymph is the primary instar for transmission to humans. We here study the infection rate of five Borrelia genospecies: B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae in nymphs, by IFA and PCR. 600 nymphs were collected in North Zealand of Denmark. Each nymph was first analysed by IFA. If positive for spirochaetal infection, the genospecies was determined by PCR. The infection rate of B. burgdorferi sensu lato was 15.5%, with the primary genospecies being B. afzelii (64.3%), B. garinii (57.1%), and B. lusitaniae (26.8%). It is the first time B. lusitaniae is documented in Denmark. Even though, the highest infection rate was discovered for B. afzelii and B. garinii, mixed infections are more common than single infections. Fifty-one percent (29/56) of these were infected with two genospecies, 7.1% (4/56) with three, and 5.3% (3/56) with four. We try to explain the high infection rate and the peculiar number of multiple infections, with a discussion of changes host abundance and occurrence of different transmission patterns.  相似文献   

3.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

4.
Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance.  相似文献   

5.
In Europe, Borrelia burgdorferi sensu lato (sl) the agent of Lyme borreliosis circulates in endemic areas between Ixodes ricinus ticks and a large number of vertebrate hosts upon which ticks feed. Currently, at least 12 different Borrelia species belonging to the complex B. burgdorferi sl have been identified among which seven have been detected in I. ricinus: B. burgdorferi sensu stricto (ss), B. garinii, B. afzelii, B. valaisiana, B. spielmanii and B. bissettii. A few dozens of vertebrate hosts have been identified as reservoirs for these Borrelia species. Specific associations were rather early observed between hosts, ticks and borrelia species, like for example between rodents and B. afzelii and B. burgdorferi ss, and between birds and B. garinii and B. valaisiana. The complement present in the blood of the hosts is the active component in the Borrelia host specificity. Recent studies confirmed trends toward specific association between Borrelia species and particular host, but also suggested that loose associations may be more frequent in transmission cycles in nature than previously thought.  相似文献   

6.
In Europe, Borrelia burgdorferi genospecies causing Lyme borreliosis are mainly transmitted by the tick Ixodes ricinus. Since its discovery, B. burgdorferi has been the subject of many epidemiological studies to determine its prevalence and the distribution of the different genospecies in ticks. In the current study we systematically reviewed the literature on epidemiological studies of I. ricinus ticks infected with B. burgdorferi sensu lato. A total of 1,186 abstracts in English published from 1984 to 2003 were identified by a PubMed keyword search and from the compiled article references. A multistep filter process was used to select relevant articles; 110 articles from 24 countries contained data on the rates of infection of I. ricinus with Borrelia in Europe (112,579 ticks), and 44 articles from 21 countries included species-specific analyses (3,273 positive ticks). These data were used to evaluate the overall rate of infection of I. ricinus with Borrelia genospecies, regional distributions within Europe, and changes over time, as well as the influence of different detection methods on the infection rate. While the infection rate was significantly higher in adults (18.6%) than in nymphs (10.1%), no effect of detection method, tick gender, or collection period (1986 to 1993 versus 1994 to 2002) was found. The highest rates of infection of I. ricinus were found in countries in central Europe. B. afzelii and B. garinii are the most common Borrelia species, but the distribution of genospecies seems to vary in different regions in Europe. The most frequent coinfection by Borrelia species was found for B. garinii and B. valaisiana.  相似文献   

7.
Over a 5-year period (1997-2001) the population densities of Ixodes pacificus Cooley & Kohls (Acari: Ixodidae) nymphs infected with spirochaetes of Borrelia burgdorferi sensu lato (s.l.) were evaluated in areas of 2000 ha at two localities (CHR, nine sites; HREC, seven sites) 25 km apart in Mendocino County, north-western California. The 5-year median density of infected nymphs was significantly higher at CHR than at HREC (0.51 vs. 0.09 per 100 m(2) and site-specific yearly densities exceeding one infected nymph per 100 m2 were 10-fold more likely to occur at CHR than at HREC. The importance of long-term data in acarologic risk assessment was demonstrated by significantly higher median yearly densities of infected nymphs at CHR from 1997 to 1999, whereas both areas had similar densities during 2000-2001. Overall, the causative agent of Lyme borreliosis in North America, B. burgdorferi Johnson et al. sensu stricto (s.s.) accounted for 76% of 46 genetically characterized B. burgdorferi s.l. infections from I. pacificus nymphs. Tremendous variability in acarologic risk was recorded within both areas: yearly densities of infected nymphs varied 11-97-fold between sites at CHR and 8-30-fold at HREC. Part of this variation could be explained by environmental traits, most notably deer usage. However, correlations between environmental factors and density of infected nymphs (for CHR and HREC combined) did not necessarily apply when these areas were considered separately. Thus, a Lyme borreliosis ecology model developed in one of these areas needs testing in the other area.  相似文献   

8.
Ixodes ricinus ticks infected with Borrelia burgdorferi sensu lato were numerous on the edges of paths and roads in a recreational park in south-western Ireland. The abundance of ticks at different sites was related to the presence of deer, but a negative relationship was shown between tick abundance and tick infection rates. This is thought to be due to the deposition of large numbers of uninfected ticks by deer, which are apparently not good reservoir hosts of B. burgdorferi s.l. Blood meal analysis only detected deer DNA in uninfected nymphs. Reservoir competent rodents, Apodemus sylvaticus and Clethrionomys glareolus, were abundant at all sites and a high proportion of captured specimens were infested with larval ticks. However, very few rodents were infected with B. burgdorferi s.l. and none of the unfed infected nymphs analysed for the identity of their larval blood meal had fed on rodents. The spirochaetes detected in I. ricinus in the study area may be poorly adapted to rodents or are not transmitted readily because of the absence of nymphal infestation. The majority of spirochaetes in these ticks were apparently acquired from non-rodent hosts, such as birds.  相似文献   

9.
Little attention has been given in scientific literature to how introduced species may act as a new host for native infectious agents and modify the epidemiology of a disease. In this study, we investigated whether an introduced species, the Siberian chipmunk (Tamias sibiricus barberi), was a potentially new reservoir host for Borrelia burgdorferi sensu lato, the causative agent of Lyme disease. First, we ascertained whether chipmunks were infected by all of the B. burgdorferi sensu lato genospecies associated with rodents and available in their source of infection, questing nymphs. Second, we determined whether the prevalence and diversity of B. burgdorferi sensu lato in chipmunks were similar to those of a native reservoir rodent, the bank vole (Myodes glareolus). Our research took place between 2006 and 2008 in a suburban French forest, where we trapped 335 chipmunks and 671 voles and collected 743 nymphs of ticks that were questing for hosts by dragging on the vegetation. We assayed for B. burgdorferi sensu lato with ear biopsy specimens taken from the rodents and in nymphs using PCR and restriction fragment length polymorphism (RFLP). Chipmunks were infected by the three Borrelia genospecies that were present in questing nymphs and that infect rodents (B. burgdorferi sensu stricto, B. afzelii, and B. garinii). In contrast, voles hosted only B. afzelii. Furthermore, chipmunks were more infected (35%) than voles (16%). These results may be explained by the higher exposure of chipmunks, because they harbor more ticks, or by their higher tolerance of other B. burgdorferi sensu lato genospecies than of B. afzelii. If chipmunks are competent reservoir hosts for B. burgdorferi sensu lato, they may spill back B. burgdorferi sensu lato to native communities and eventually may increase the risk of Lyme disease transmission to humans.  相似文献   

10.
The genetic diversity of Borrelia burgdorferi sensu lato was assessed in individual adult Ixodes ricinus ticks from Europe by direct PCR amplification of spirochetal DNA followed by genospecies-specific hybridization. Analysis of mixed infections in the ticks showed that B. garinii and B. valaisiana segregate from B. afzelii. This and previous findings suggest that host complement interacts with spirochetes in the tick, thereby playing an important role in the ecology of Lyme borreliosis.  相似文献   

11.
The aim of the study was to determine the infection level of adult forms and larvae of ticks and mosquitoes with Borrelia burgdorferi in the forested areas of Szczecin. A total of 1699 ticks Ixodes ricinus, including 1422 nymphs, 277 adult forms and 2862 mosquito females representing the genera Aedes (89.6%) and Culex (10.4%) were collected between the years 2004 and 2005. A further 3746 larvae and 1596 pupae of Culex pipiens pipiens were colleted from water bodies. Borrelia burgdorferi s. l. was detected in the arthropods by the method of indirect immunofluorescence assay (IFA). A positive immunological reaction was detected in 16.6% of the adult forms and in 16.5% of the nymphs of Ixodes ricinus. Spirochetes were also detected in 1.7% of mosquito females, 3.2% of larvae and in 1.6% of pupae of Culex pipiens pipiens. The results of the present study confirm that contact with ticks constitutes the main risk of contracting Lyme disease, although mosquitoes play a role as vectors as well.  相似文献   

12.
Unfed nymphal and adult Ixodes ricinus ticks were collected from five locations within the 10,000-ha Killarney National Park, Ireland. The distribution and prevalence of the genomospecies of Borrelia burgdorferi sensu lato in the ticks were investigated by PCR amplification of the intergenic spacer region between the 5S and 23S rRNA genes and by reverse line blotting with genomospecies-specific oligonucleotide probes. The prevalence of ticks infected with B. burgdorferi sensu lato was significantly variable between the five locations, ranging from 11.5 to 28.9%. Four genomospecies were identified as B. burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and VS116. Additionally, untypeable B. burgdorferi sensu lato genomospecies were identified in two nymphs. VS116 was the most prevalent of the genomospecies and was identified in 50% of the infected ticks. Prevalences of B. garinii and B. burgdorferi sensu stricto were similar (17 and 18%, respectively); however, significant differences were observed in the prevalence of these genomospecies in mixed infections (58.8 and 23.5%, respectively). Notably, the prevalence of B. afzelii was low, comprising 9.6 and 7.4%, respectively, of single and mixed infections. Significant variability was observed in the distribution and prevalence of B. burgdorferi sensu lato genomospecies between locations in the park, and the diversity and prevalence of B. burgdorferi sensu lato genomospecies was typically associated with woodland. The distributions of B. burgdorferi sensu lato genomospecies were similar in wooded areas and in areas bordering woodland, although the prevalence of B. burgdorferi sensu lato infection was typically reduced. Spatial distributions vegetation composition, and host cenosis of the habitats were identified as factors which may affect the distribution and prevalence of B. burgdorferi sensu lato genomospecies within the park.  相似文献   

13.
We have analyzed a panel of independent North American isolates of the Lyme disease agent spirochete, Borrelia burgdorferi (sensu stricto), for the presence of linear plasmids with sequence similarities to the 12 linear plasmids present in the B. burgdorferi type strain, isolate B31. The frequency of similarities to probes from each of the 12 B31 plasmids varied from 13 to 100% in the strain panel examined, and these similarities usually reside on plasmids similar in size to the cognate B31 plasmid. Sequences similar to 5 of the 12 B31 plasmids were found in all of the isolates examined, and >66% of the panel members hybridized to probes from 4 other plasmids. Sequences similar to most of the B. burgdorferi B31 plasmid-derived DNA probes used were also found on linear plasmids in the related Eurasian Lyme agents Borrelia garinii and Borrelia afzelii; however, some of these plasmids had uniform but substantially different sizes from their B. burgdorferi counterparts.  相似文献   

14.
Ixodes ricinus ticks and mice can be infected with both Borrelia burgdorferi sensu stricto and Borrelia garinii. The effect of coinfection with these two Borrelia species on the development of murine Lyme borreliosis is unknown. Therefore, we investigated whether coinfection with the nonarthritogenic B. garinii strain PBi and the arthritogenic B. burgdorferi sensu stricto strain B31 alters murine Lyme borreliosis. Mice simultaneously infected with PBi and B31 showed significantly more paw swelling and arthritis, long-standing spirochetemia, and higher numbers of B31 spirochetes than did mice infected with B31 alone. However, the number of PBi spirochetes was significantly lower in coinfected mice than in mice infected with PBi alone. In conclusion, simultaneous infection with B. garinii and B. burgdorferi sensu stricto results in more severe Lyme borreliosis. Moreover, we suggest that competition of the two Borrelia species within the reservoir host could have led to preferential maintenance, and a rising prevalence, of B. burgdorferi sensu stricto in European I. ricinus populations.  相似文献   

15.
Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.  相似文献   

16.
It has been known for decades that human Lyme disease is caused by the three spirochete species Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii. Recently, Borrelia valaisiana, Borrelia spielmanii, and Borrelia bissettii have been associated with Lyme disease. We report the complete genome sequences of B. valaisiana VS116, B. spielmanii A14S, and B. bissettii DN127.  相似文献   

17.
Tack W  Madder M  Baeten L  DE Frenne P  Verheyen K 《Parasitology》2012,139(10):1273-1281
SUMMARY The mainstream forestry policy in many European countries is to convert coniferous plantations into (semi-natural) deciduous woodlands. However, woodlands are the main habitat for Ixodes ricinus ticks. Therefore, assessing to what extent tick abundance and infection with Borrelia spirochetes are affected by forest composition and structure is a prerequisite for effective prevention of Lyme borreliosis. We selected a total of 25 pine and oak stands, both with and without an abundant shrub layer, in northern Belgium and estimated tick abundance between April and October 2008-2010. Additionally, the presence of deer beds was used as an indicator of relative deer habitat use. Borrelia infections in questing nymphs were determined by polymerase chain reactions. The abundance of larvae, nymphs, and adults was higher in oak stands compared to pine stands and increased with increasing shrub cover, most likely due to differences in habitat use by the ticks' main hosts. Whereas tick abundance was markedly higher in structure-rich oak stands compared to homogeneous pine stands, the Borrelia infection rates in nymphs did not differ significantly. Our results indicate that conversion towards structure-rich deciduous forests might create more suitable tick habitats, but we were unable to detect an effect on the infection rate.  相似文献   

18.
使用环介导恒温扩增技术,基于莱姆病病原伯氏疏螺旋体的外膜蛋白A(OspA)基因,针对伯氏疏螺旋体不同的基因型设计特异性引物,对国内主要的莱姆病病原伯氏疏螺旋体的3个基因型进行分型鉴定。研究结果表明,设计的引物具有良好的特异性,可以对狭义伯氏疏螺旋体(Borrelia burgdorferi sensu strict)、嘎氏疏螺旋体(B.afzelii)和伽氏疏螺旋体(B.garinii)进行分型鉴定。伯氏疏螺旋体的分型鉴定可以对不同临床症状莱姆病患者的治疗和莱姆病的控制提供一定的依据。  相似文献   

19.
Unfed nymphal Ixodes ricinus, Haemaphysalis concinna, and adult Dermacentor reticulatus were collected in two locations of Saxony in July and September 1991 by flagging. In July, the abundance of nymphal I. ricinus was about 2-3 times higher than that of nymphal H. concinna, a time of the year when nymphs of both species are reported to have a seasonal peak of activity. No D. reticulatus were flagged concurrently. In September, host-seeking activity of nymphal I. ricinus was again quite high as was that of adult D. reticulatus but only low numbers of nymphal H. concinna were collected. The flagged ticks were individually examined for Borrelia by an indirect immunofluorescence assay (I. ricinus: n = 414; H. concinna: n = 96; D. reticulatus: n = 116). The prevalence of Borrelia (probably B. burgdorferi) in I. ricinus varied from 12.1% to 21.0%. No borreliae were found in H. concinna. Of the examined D. reticulatus from one site (n = 97) 11.3% contained either B. burgdorferi or a related Borrelia. This may be the first finding of Borrelia in an Eurasian Dermacentor species.  相似文献   

20.
Many epidemiological studies were conducted for studying Lyme borreliosis (LB) which represents a new global public health problem. It is now the most common vector-borne disease in Europe and North America. The causative agent Borrelia burgdorferi sl is a bacterial species complex comprising 12 delineated and named species. In North Africa, few studies based on clinical and serological features, have suggested that LB could occur. Indeed, recent studies conducted in Tunisia, Algeria and Morocco have showm that Ixodes ricinus is present in cooler and humid area of these regions. These studies also revealed that this species is a vector of B. burgdorferi sl with high prevalence of infection. Using IFI and PCR tests, the mean rate of Borrelia-infection ranged from 50 to 60% in I. ricinus adult collected in Tunisia and Morocco and from 30 to 40% in nymphs; in contrast, the prevalence in larvae is less than 2.5%. Several strains of B. burgdorfer were isolated from adult and nymph I ricinus collected in Tunisia and Morocco. The identification of these strains and DNAs directly extracted from Ixodes was done by PCR-RFLP and sequence analysis. The results showed that B. lusitaniae (genotypes Poti B2 and Poti B3) is the predominant species circulating in I. ricinus in Tunisia and Morocco, B. garinii and B. burgdorferi ss and B lusitaniae were also present but very rare. These results provide the evidence for the existence of B. burgdorferi sl in North Africa; however, the impact of LB in the human population seem to be negligible and the seroprevalence of Borrelia in forest workers (considered as population at high risk) in Tunisia is less than 4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号