首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli   总被引:9,自引:0,他引:9  
R Bernier  H Driguez  M Desrochers 《Gene》1983,26(1):59-65
A gene coding for xylanase synthesis in Bacillus subtilis was isolated by direct shotgun cloning using Escherichia coli as a host. Following partial digestion of B. subtilis chromosomal DNA with PstI or EcoRI restriction enzymes, fragments ranging from 3 to 7 kb were introduced into the PstI or EcoRI sites of pBR325. Transformed colonies having lost either the ampicillin or chloramphenicol resistance markers were screened directly on 1% xylan plates. Out of 8000 transformants, ten xylanase-positive clones were identified by the clearing zone around lysozyme-treated colonies. Further characterization of one of the clones showed that the xylanase gene was present in a 3.9-kb insert within the PstI site of the plasmid pBR325. Retransformation of E. coli strain with the xylanase-positive hybrid plasmid pRH271 showed 100% transformation to xylanase production. The intracellular xylanase produced by the transformed E. coli was purified by ion exchange and gel permeation chromatography. The electrophoretic mobility of the purified xylanase indicated an Mr of 22 000.  相似文献   

2.
Summary The native promoter of a xylanase gene isolated from Clostridium thermocellum was replaced with a strong promoter screened from Bacillus subtilis chromosomes. A part of the C-terminal region of the gene which is not related to the xylanase activity was removed. With the modified xylanase gene, B. subtilis was transformed and grown in LB medium. The xylanase gene was expressed well in B. subtilis and extracellular xylanase was produced up to 30 units per ml when the growth reached OD600 of 4.8.  相似文献   

3.
4.
The xylanase gene of Bacillus circulans Teri-42 was cloned in both B. subtilis and Escherichia coli. The enzyme activity was almost 87% higher in B. subtilis (pBA7) than in E. coli (pAQ4). No cellulase activity was detected in the clones, B. subtilis (pBA7) and E. coli (pAQ4). Approximately 1120 U (80%) of the xylanase was secreted extracellularly by the clone B. subtilis (pBA7) as compared to 79 U (88%) excreted in E. coli (pAQ4). In B. subtilis (pBA7) the optimal xylanase activity was at pH 7.0 and 50 degrees C, which was the same as that of the parent B. circulans Teri-42. The recombinant xylanase in B. subtilis was more stable at higher temperatures than the parent B. circulans Teri-42. Purification of xylanase from the clone B. subtilis (pBA7) showed a 71 kDa polypeptide similar to that observed in B. circulans Teri-42.  相似文献   

5.
A genomic library of Bacillus lyticus was constructed in lambda GEM 11 vector and screened for the xylanase gene using Congo red plate assay. A 16-kb fragment containing the xylanase gene was obtained which was further subcloned using Mbo I partial digestion in an E. coli pUC 19 vector. A 1.3-kb sub-fragment was obtained which coded for a xylanase gene of Mr 23,650 Da. This fragment was sequenced and the homology was checked with known xylanases. The maximum homology was 97%, which was obtained with an endo xylanase gene from Bacillus species at the DNA level, while the translated sequence showed only one amino acid change from alanine to serine at position number 102. Expression was checked in E. coli, using the native promoter, and an extracellular activity of 5.25 U/mL was obtained. Cloning of the gene was done in Bacillus subtilis using a shuttle vector pHB 201, which resulted in increasing the basal level xylanase activity from 14.02 to 22.01 U/mL.  相似文献   

6.
The structural gene for glutamine synthetase (glnA) in Bacillus subtilis ( glnAB ) cloned in the lambda vector phage Charon 4A was used to transduce a lysogenic glutamine auxotrophic Escherichia coli strain to prototrophy. The defective E. coli gene ( glnAE ) was still present in the transductant since it could be transduced. In addition, curing of the prototroph resulted in the restoration of glutamine auxotrophy. Proteins in crude extracts of the transductant were examined by a "Western blotting" procedure for the presence of B. subtilis or E. coli glutamine synthetase antigen; only the former was detected. Growth of the strain in media without glutamine was not curtailed even when the bacteriophage lambda pL and pRM promoters were hyperrepressed . The specific activities and patterns of derepression of glutamine synthetase in the transductant were similar to those of B. subtilis, with no evidence for adenylylation. The information necessary for regulation of glnAB must be closely linked to the gene and appears to function in E. coli.  相似文献   

7.
The gene coding for the subunits of aspartokinase II from Bacillus subtilis has been identified in a B. subtilis DNA library and cloned in a bacterial plasmid (Bondaryk, R. P., and Paulus, H. (1984) J. Biol. Chem. 259, 585-591). The introduction of a plasmid carrying the aspartokinase II gene into an auxotrophic Escherichia coli strain lacking all three aspartokinases restored its ability to grow in the absence of L-lysine, L-threonine, and L-methionine. The B. subtilis aspartokinase gene could thus be functionally expressed in E. coli and substitute for the E. coli aspartokinases. Measurement of aspartokinase levels in extracts of aspartokinaseless E. coli transformed with the B. subtilis aspartokinase II gene revealed an enzyme level comparable to that in a genetically derepressed B. subtilis strain. In spite of the high level of aspartokinase, the growth of the transformed E. coli strain was severely inhibited by the addition of L-lysine but could be restored by also adding L-homoserine. This apparently paradoxical sensitivity to lysine was due to the allosteric inhibition of B. subtilis aspartokinase II by that amino acid, a property which was also observed in extracts of the transformed E. coli strain. The synthesis and degradation of the aspartokinase II subunits were measured by labeling experiments in E. coli transformed with the B. subtilis aspartokinase II gene. In contrast to exponentially growing cells of B. subtilis which contained equimolar amounts of the aspartokinase alpha and beta subunits, the transformed E. coli strain contained a 3-fold molar excess of beta subunit. Pulse-chase experiments showed that the disproportionate level of beta subunit was not due to more rapid turnover of alpha subunit, both subunits being quite stable, but presumably to a more rapid rate of synthesis. After the addition of rifampicin, the synthesis of alpha subunit declined much more rapidly than that of beta subunit, indicating that the two subunits were translated independently from mRNA species that differ in functional stability. In conjunction with the results described in the preceding paper which demonstrated that the aspartokinase subunits are encoded by a single DNA sequence, these observations imply that the alpha and beta subunits of B. subtilis aspartokinase II are the products of in-phase overlapping genes.  相似文献   

8.
9.
Bacillus subtilis strain B10 was isolated for degumming of ramie blast fibers, and a fragment of 642-bp was amplified from chromosomal DNA by using primers directed against the sequence of Bacillus subtilis xylanase gene given in GenBank. The positive clones were screened on the selected LB agar plates supplemented with xylan by Congo-red staining method. The recombinant plasmid from one positive clone was used for further analysis and DNA sequencing. The gene sequence is different from the reported xylanase gene sequence in sites of two base pairs. The recombinant plasmid was expressed in Escherichia coli, and xylanase activity was measured. The xylanase distribution in extracellular, intracellular and periplasmic fractions were about 22.4%, 28.0% and 49.6%, respectively. The xylanase had optimal activity at pH 6.0 and 50 degrees C.  相似文献   

10.
The gene coding for the inulin hydrolyzing enzyme levanase which was previously cloned from Bacillus subtilis was fused to the tac-promoter. Overexpression in Escherichia coli resulted in high amounts of intracellularly produced levanase (up to 20 U mg-1). After removal of the bacterial 5' sequences, the levanase gene was also cloned into a yeast expression vector based on the PGK-promoter. Clones containing the intact levanase gene including the bacterial signal sequence gave rise to synthesis of active levanase by Saccharomyces cerevisiae transformants. A considerable amount of levanase protein was found in the culture medium (around 0.5 U ml-1) indicating efficient secretion of B. subtilis levanase from yeast.  相似文献   

11.
A 4.0-kilobase (kb) fragment of Bacillus circulans genomic DNA inserted into pUC19 and encoding endoxylanase activity was subjected to a series of subclonings. A 1.0-kb HindIII-HincII subfragment was found to code for xylanase activity. Maximum expression levels were observed with a subclone that contained an additional 0.3-kb sequence upstream from the coding region. Enhancer sequences in the upstream region are thought to be responsible for these high expression levels. Southern hybridization analyses revealed that the cloned gene hybridized with genomic DNA from Bacillus subtilis and Bacillus polymyxa. Xylanase activity expressed by Escherichia coli harboring the cloned gene was located primarily in the intracellular fraction. Levels of up to 7 U/ml or 35 mg/liter were obtained. The protein product was purified by ion exchange and gel permeation chromatography. The xylanase had a molecular weight of 20,500 and an isoelectric point of 9.0.  相似文献   

12.
The penicillin G acylase gene cloned from Arthrobacter viscosus 8895GU was subcloned into vectors, and the recombinant plasmids were transferred into Escherichia coli or Bacillus subtilis. Both E. coli and B. subtilis transformants expressed the A. viscosus penicillin G acylase. The enzyme activity was found in the intracellular portion of the E. coli transformants or in the cultured medium of the B. subtilis transformants. Penicillin G acylase production in the B. subtilis transformants was 7.2 times higher than that in the parent A. viscosus. The A. viscosus penicillin G acylase was induced by phenylacetic acid in A. viscosus, whereas the enzyme was produced constitutively in both the E. coli and B. subtilis transformants carrying the A. viscosus penicillin G acylase gene.  相似文献   

13.
Penicillin G acylase gene from Bacillus megaterium ATCC 14945 has been isolated. Recombinant Escherichia coli clones were screened for clear halo forming activity on the lawn of Staphylococcus aureus ATCC 6538P using the enzymatic acylating reaction of 7-aminodeacetoxycephalosporanic acid (7-ADCA) and D-(alpha)-phenylglycine methylester. The gene was contained within a 2.8 kb DNA fragment and expressed efficiently when transferred from E. coli to Bacillus subtilis. A twenty times greater amount of enzyme was produced in B. subtilis transformant than that in B. megaterium. The purified enzyme from subcloned B. subtilis showed that the native enzyme consisted of two identical subunits, each with a molecular weight of 57,000. The enzyme was able to react on various cephalosporins, i.e., cephalothin, cefamandole, cephaloridine, cephaloglycin, cephalexin and cephradine.  相似文献   

14.
E M Rubin  G A Wilson  F E Young 《Gene》1980,10(3):227-235
The gene from Escherichia coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid, pER2, was effective in transforming both E. coli and Bacillus subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine-requiring strains of B. subtilis to thymine independence. Linearization of the chimeric plasmid, pER2, with restriction enzymes markedly diminished its ability to transform B. subtilis auxotrophs. The Thy+ transformants derived from the transformation of B. subtilis with pER2 DNA did not contain detectable extrachromosomal DNA as demonstrated by Southern hybridization patterns and centrifugation in CsCl gradients of DNA isolated from B. subtilis colonies transformed with the chimeric plasmid. We conclude that the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis, demonstrating that extensive homology is not required for the integration of foreign DNA. This is the first reported case of a gene from a Gram-negative bacterium functioning in a Gram-positive organism.  相似文献   

15.
A 4.0-kilobase (kb) fragment of Bacillus circulans genomic DNA inserted into pUC19 and encoding endoxylanase activity was subjected to a series of subclonings. A 1.0-kb HindIII-HincII subfragment was found to code for xylanase activity. Maximum expression levels were observed with a subclone that contained an additional 0.3-kb sequence upstream from the coding region. Enhancer sequences in the upstream region are thought to be responsible for these high expression levels. Southern hybridization analyses revealed that the cloned gene hybridized with genomic DNA from Bacillus subtilis and Bacillus polymyxa. Xylanase activity expressed by Escherichia coli harboring the cloned gene was located primarily in the intracellular fraction. Levels of up to 7 U/ml or 35 mg/liter were obtained. The protein product was purified by ion exchange and gel permeation chromatography. The xylanase had a molecular weight of 20,500 and an isoelectric point of 9.0.  相似文献   

16.
17.
The penicillin G acylase gene cloned from Arthrobacter viscosus 8895GU was subcloned into vectors, and the recombinant plasmids were transferred into Escherichia coli or Bacillus subtilis. Both E. coli and B. subtilis transformants expressed the A. viscosus penicillin G acylase. The enzyme activity was found in the intracellular portion of the E. coli transformants or in the cultured medium of the B. subtilis transformants. Penicillin G acylase production in the B. subtilis transformants was 7.2 times higher than that in the parent A. viscosus. The A. viscosus penicillin G acylase was induced by phenylacetic acid in A. viscosus, whereas the enzyme was produced constitutively in both the E. coli and B. subtilis transformants carrying the A. viscosus penicillin G acylase gene.  相似文献   

18.
19.
赵怡  凌辉生  李任强 《生态科学》2011,30(2):174-177
为了实现Mn-SOD基因在大肠杆菌(E.coli)中的可溶性表达,根据枯草芽孢杆菌(Bacillus subtilis)168sodA核酸序列设计引物,以枯草芽孢杆菌ATCC 9372基因组为模板,PCR扩增获得了Mn-SOD基因.将此基因重组至原核表达载体pET-28a,构建含Mn-SOD基因的重组表达质粒,并转化至大肠杆菌BL21(DE3).异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达获得Mn-SOD,蛋白分子量约为26kD,占全菌蛋白的5.6%.改良的连苯三酚自氧化法测定SOD活力,菌体可溶性总蛋白SOD比活为51.09U·mg-1,是对照组的.8倍.枯草芽孢杆菌ATCC 9372 Mn-SOD基因在大肠杆菌BL21(DE3)中首次成功表达,产物具有较高的可溶性和活性,为大量制备Mn-SOD奠定了基础.  相似文献   

20.
Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis   总被引:14,自引:0,他引:14  
W M de Vos  S C de Vries  G Venema 《Gene》1983,25(2-3):301-308
By means of homopolymer dG-dC tailing, using PstI linearized pBR327 as vector, we constructed small plasmids containing the entire Escherichia coli recA gene. The 1.8-kb inserts were recloned in the Bacillus subtilis expression vector pPL608 in a B. subtilis recE4 strain. Analysis of plasmid-coded proteins showed expression of the E. coli recA gene both in minicells and whole cells of B. subtilis. Expression was under control of the bacteriophage SP02 promoter, which is part of pPL608. A recA-expressing plasmid completely abolished the transformation deficiency of the recE4 mutant as well as its sensitivity to mitomycin C (MC). The expressed recA gene also restored recombination in other B. subtilis strains lacking the recE gene product. These results indicate a high similarity between the functions of the E. coli RecA and B. subtilis RecE proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号