首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylmalonate is accumulated in the genetically linked deficiency of methylmalonyl-CoA mutase (methylmalonic acidemia). In this condition is also observed an elevation of the glycine levels. This communication reports the inhibition of the synaptosomal glycine uptake by methylmalonate, when present at similar concentrations to those found in methylmalonic acidemia. This inhibition could be responsible, at least in part, for the neurological damage characteristic of this disease, by increasing the glycine levels in the synaptic cleft and thus interfering with the normal function of the inhibitory glycinergic synapsis in the spinal cord.  相似文献   

2.
Abstract: The influence of putrescine, spermidine, spermine, and some aliphatic α,ω-diamines on the uptake of neurotransmitters by rat forebrain synaptosomes was investigated. Choline uptake was most effectively inhibited by spermine (IC50= 0.22 m M ), less so by spermidine (IC50= 4.0 m M ), but not by putrescine (IC50 > 100 m M ). At 10 m M, 1,3-diaminopropane, cadaverine, and 1,8-diaminooctane all inhibited choline uptake by 50% or more. Spermine and spermidine inhibited the uptake of dopamine with IC50 values of 2.7 and 2.2 m M , respectively. Putrescine was only slightly inhibitory (IC50= 17.3 m M ) and the other diamines were inactive. The uptake of γ-aminobutyrate (GABA) was only slightly inhibited (15–40%) by the polyamines at 10 m M . With the exception of inhibition of glycine uptake by 1,8-diaminooctane (60%) and of glutamate uptake by cadaverine (35%) none of the polyamines, tested at 10 m M , affected the uptake of adenosine, glutamate, and glycine significantly. A possible modulatory role for polyamines in synaptic transmission through interaction by negatively charged groups of the synaptic membrane with the polycationic compounds is discussed.  相似文献   

3.
The dopamine (DA) uptake system in mammalian nerve terminals was studied by measuring the unidirectional influx of tritiated DA into synaptosomes prepared from rat caudate nucleus. Two distinct time-dependent components of DA uptake were observed. The principal component was saturable with respect to DA concentration, required both external Na and Cl, and was competitively blocked by micromolar concentrations of the psychotropic agents cocaine, benztropine, nomifensine, amphetamine, and methamphetamine. This principal component of uptake has the properties expected for a carrier-mediated transport system. The second component, which accounted for about 10-30% of the DA uptake at 2 microM DA, was not saturable, and was independent of external Na, Cl, and blockers of the carrier-mediated system. The saturable, Na-dependent component had an apparent Km(DA) of about 0.5 microM. The dependence of DA uptake on external Na was sigmoid [Hill coefficient = 2; Ka(Na) = 45 mM] whereas the dependence on Cl was best described by a rectangular hyperbola [Ka(Cl) = 15 mM]. Depolarizing conditions (elevated external K) reduced the rate of DA influx. The data are consistent with a carrier-mediated DA transport mechanism in which each DA molecule entering the nerve terminal via the carrier is accompanied by two or more Na ions and one Cl ion in a rheogenic process carrying one or more net positive charges into the cell. Net, concentrative accumulation of DA inside nerve terminals may be accomplished by utilizing the Na electrochemical gradient to drive DA against its electrochemical gradient via this carrier system.  相似文献   

4.
Abstract: Histidine transport and metabolism in rat brain synptosomes were investigated to study the possible role of histidine uptake in the synthesis of the putative neurotransmitter histamine (HA). Histidine uptake was found to be regionally distributed and temperature sensitive and was not totally independent of sodium or possium ions. Transport was inhibited by metabolic inhibitors, as well as by promethazine and quinacrine. A number of other HA-related agents and several histidine metabolites had no effect. Kinetic analyses of histidine transport revealed the presence of both high- and lowaffinity systems in cerebral cortex. Histidine uptake increased following preexposure of synaptosomes to depolarizing concentrations of potassium. This effect was dependent on the presence of calcium ions during the preincubation. No newly formed [3H]HA was detectable in rat brain synaptosomes following [3H]histidine transport. Lesions of the medial forebrain bundle did not alter histidine uptake in the hippocampus or cerebral cortex. Ontogenic studies indicated that the histidine uptake system developed rapidly and reached a peak during postnatal days 12–17. Overall, the present findings do not support a role for histidine transport in the regulation or maintenance of neurotransmitter pools of HA in rat brain.  相似文献   

5.
Tryptophan uptake, hydroxylation, and decarboxylation in isolated synaptosomes were studied to assess how their properties may determine the rate of serotonin synthesis in the presynaptic nerve terminals of the brain. Simultaneous measurements of the rates of uptake, hydroxylation, and decarboxylation in the presence and absence of various inhibitors showed that tryptophan hydroxylase is rate-limiting for serotonin synthesis in this model system. There was significant direct decarboxylation of tryptophan to tryptamine. Measurement of tryptophan hydroxylase flux with varying internal concentrations of tryptophan allowed the determination of the Km of tryptophan hydroxylase in synaptosomes for tryptophan of 120 +/- 15 microM. Depolarisation of synaptosomes with veratridine caused both a reduction in the internal tryptophan concentration and an apparent activation of tryptophan hydroxylase. This activation did not occur in the absence of Ca2+ or in the presence of trifluoperazine. Synaptosomal serotonin synthesis and brain stem-soluble tryptophan hydroxylase were inhibited by low concentrations of noradrenaline or dopamine. Dibutyryl cyclic AMP, glucagon, insulin, and vasopressin were observed to have no effect on tryptophan uptake or hydroxylation in synaptosomes.  相似文献   

6.
Abstract: Adenosine, a putative inhibitory transmitter or modulator in the brain, is rapidly transported by rat cerebral cortical synaptosomes. The uptake may represent a facilitated diffusion process, which is saturable and temperature-dependent. In this study, the uptake process was very rapid, reaching completion within 60 s of incubation at 37°C, and had an apparent Km value of 0.9μM and a Vmax value of 5.26 pmol/mg protein/ 30 s. Over 70% of the adenosine taken up remained unchanged, whereas 14% was metabolized to inosine. Twelve percent of the adenosine was converted to nucleotides. Rapid uptake of adenosine into rat cerebral cortical synaptosomes was partially inhibited by replacing Na+ with choline chloride in the medium. Ca2+ ion is important for the uptake process, as inhibition of adenosine uptake occurs in the presence of either Co2- or EGTA. Rapid uptake of adenosine is apparently mediated by a nucleoside carrier, a conclusion based on its inhibition by a variety of purine and pyrimidine nucleosides. Uptake was inhibited by dipyridamole, hexobendine, papaverine, flurazepam, and morphine. Over 60% of the adenosine taken up by the rapid uptake system (30 s) was released by depolarizing agents. In contrast, only 30% of the adenosine taken up during a 15-min incubation period was released under the same conditions. [3H]Adenosine was the predominant purine released in the presence or absence of depolarizing agents. The basal and KCl-evoked release mechanisms were found to be at least partially Ca2+-dependent, however, the release of adenosine by veratridine was increased in the presence of EGTA. This finding is in agreement with the reported Ca2+-independent release of ATP from brain synaptosomes. The present findings suggest that there are at least two functional pools of adenosine in synaptosomes. Adenosine taken up by different uptake systems may be destined for different uses (metabolism or release) in the neuron.  相似文献   

7.
The uptake of [3H]dopamine (DA) into rat striatal synaptosomes in the presence of a monoamine oxidase inhibitor was studied using a filtration technique. After a 10-min preincubation period, a fast initial uptake of [3H] DA was seen. Uptake reached a maximum after 4 min of incubation. If incubation was continued for more than 7 min, a gradual decrease in synaptosomal [3H]DA levels was found. Uptake was dependent on preincubation time; initial uptake velocity and maximal uptake decreased irreversibly with increasing preincubation periods. Moreover, the capacity of the synaptosomes to retain the [3H]DA during longer incubation times was progressively affected. The decrease in initial uptake activity was due to a decrease in the Vmax of the transport system. Dithiothreitol (2.8 mM) protected synaptosomal uptake activity against deterioration at 37°C. Also, DA itself (10-7M) stabilized the uptake mechanism if added to the suspension before preincubation was started. Since [3H]DA uptake observed after loading the synaptosomes with labeled DA was similar to the uptake seen if the synaptosomes were not previously loaded with DA, it was concluded that under these conditions synaptosomal DA is completely exchangeable with exogenous substrate. Prolonged storage of the synaptosomes at 0°C also resulted in a time-dependent decrease in uptake activity (t1/2= 116 min). The addition of unlabeled DA or dithiothreitol to the suspension did not affect instability at 0°C.  相似文献   

8.
Abstract: The Na+ and K+ concentrations in isolated Torpedo marmorata synaptosomes were determined. Synaptosomes made according to the method of Israël et al. have high internal Na+ (290 MM) and low internal K+ (30 mM) concentrations. Modification of the homogenisation media permitted the isolation of synaptosomes which could maintain transmembrane ion gradients (internal Na+, 96 mM; K+, 81 mM); 0.1 mM-ouabain abolished these gradients. The trans-membrane Na+ gradient started to dissipate after 15 min at 20°C. Inclusion of ATP in the homogenisation medium enabled the synaptosomes to maintain the Na+ gradient for about 90 min. The presence of these transmembrane ion gradients stimulated choline uptake sevenfold. It is concluded that (a) by selecting the isolation media, Torpedo synaptosomes can be prepared with transmembrane ion gradients; (b) these gradients are ouabain-sensitive and stimulate choline uptake: (c) the synaptosomes require additional ATP to maintain the ion gradients.  相似文献   

9.
Abstract: Agmatine (decarboxylated arginine), an endogenous ligand for imidazoline receptors, has been identified in brain where it is synthesized from arginine by arginine decarboxylase. Here we report a mechanism for the transport of agmatine into rat brain synaptosomes. The uptake of agmatine was energy- and temperature-dependent and saturable with a K m of 18.83 ± 3.31 m M and a V max of 4.78 ± 0.67 nmol/mg of protein/min. Treatment with ouabain (Na+,K+-ATPase inhibitor) or removal of extracellular Na+ did not attenuate the uptake rate. Agmatine transport was not inhibited by amino acids, polyamines, or monoamines, indicating that the uptake is not mediated by any amino acid, polyamine, or monoamine carriers. When we examined the effects of some ion-channel agents on agmatine uptake, only Ca2+-channel blockers inhibited the uptake, whereas a reduction in extracellular Ca2+ increased it. In addition, some imidazoline drugs, such as idazoxan and phentolamine, were strong noncompetitive inhibitors of agmatine uptake. Thus, a selective, Na+-independent uptake system for agmatine exists in brain and may be important in regulating the extracellular concentration of agmatine.  相似文献   

10.
蛋白激酶C对大鼠缺血海马突触体谷氨酸摄取的调控作用   总被引:1,自引:0,他引:1  
采用大鼠海马脑片体外缺血模型,观察海马突触体内蛋白激酶C(PKC)活性的变化,以及这种变化对突触体谷氨酸(GLU)摄取的影响。结果显示:海马脑片体外“缺血”10min,其突触体内PKC活性基本不变,而缺血30min,突触体内PKC活性显著上升(P<0.01,n=6);非N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂DNQX有效地抑制PKC活性的同时,可降低胞外GLU的堆积,而NMDA受体阻断剂AP_5无作用。进一步实验证明,PKC激动剂PDB浓度依赖性地抑制突触体对3H-GLU的摄取(IC50=131±10μmol/L),此抑制作用可由PKC抑制剂H-7(100μmol/L)抵消。提示脑缺血诱发GLU堆积的作用机理可能是:脑缺血引发钙内流导致GLU过量释放,GLU又通过突触前非NMDA受体激活PKC,抑制其自身摄取,正反馈性加重胞外GLU的堆积。  相似文献   

11.
By using both synaptosomes and cultured astrocytes from rat cerebral cortex, we have investigated the inhibitory action of arachidonic acid on the high-affinity glutamate uptake systems, focusing on the possible physiological significance of this mechanism. Application of arachidonic acid (1-100 microM) to either preparation leads to fast (within 30 s) and largely reversible reduction in the uptake rate. When either melittin (0.2-1 microgram/ml), a phospholipase A2 activator, or thimerosal (50-200 microM), which inhibits fatty acid reacylation in phospholipids, is applied to astrocytes, both an enhancement in extracellular free arachidonate and a reduction in glutamate uptake are seen. The two effects display similar dose dependency and time course. In particular, 10% uptake inhibition correlates with 30% elevation in free arachidonate, whereas inhibition greater than or equal to 60% is paralleled by threefold stimulation of arachidonate release. In the presence of albumin (1-10 mg/ml), a free fatty acid-binding protein, inhibition by either melittin, thimerosal, or arachidonic acid is prevented and an enhancement of glutamate uptake above the control levels is observed. Our data show that neuronal and glial glutamate transport systems are highly sensitive to changes in extracellular free arachidonate levels and suggest that uptake inhibition may be a relevant mechanism in the action of arachidonic acid at glutamatergic synapses.  相似文献   

12.
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+]i) and blocked the depolarization-dependent increases in [Ca2+]i. These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+]i and the KCl-evoked rise in [Ca2+]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45Ca2+ uptake and efflux under basal conditions and inhibited the 45Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels.  相似文献   

13.
Adenosine Transport into Guinea-pig Synaptosomes   总被引:2,自引:15,他引:2  
Abstract: Kinetics for transport of adenosine into guinea-pig neocortex synaptosomes were studied by incubating them with [14C]adenosine for up to 30 s. The apparent K m value of the high-affinity transport system for adenosine was 21.1 μM and the V max value was 257.3 pmol/min/mg protein. The transport system was inhibited by both compounds structurally related (compounds 554 and 555) and unrelated (dipyridamole) to adenosine. Because electrically stimulated synaptosomes release up to 1.5% of the adenosine derivative content per min, the physiological significance of adenosine uptake is discussed as a possible mechanism to compensate for the loss of adenine nucleotides from synaptosomes preparations.  相似文献   

14.
Abstract: 45Ca2+ uptake by synaptosomes isolated from cerebral cortex, cerebellum, midbrain, and brain stem of male Sprague-Dawley rats was measured at 1-, 3-, 5-, 15-, 30-, and 60-s time periods. The fastest rate of depolarization-dependent calcium uptake occurred in each brain region between 0 and 1 s. Uptake rates dropped off quickly with 3–5-s rates at approximately 15–20% of those observed at 0–1 s in cerebral cortex, cerebellum, and midbrain. Uptake rates at the 1–3-s interval were maintained at a relatively high rate in these three brain regions suggesting mixed fast- and slow-phase processes. The magnitude and rate of 45Ca2+ uptake were similar in synaptosomes from cerebral cortex, cerebellum, and midbrain but were significantly less in brain stem synaptosomes. These results suggest a fast and a slow component to voltage-dependent 45Ca2+ uptake by presynaptic nerve terminals from various brain regions.  相似文献   

15.
Uptake of Glycine into Synaptic Vesicles Isolated from Rat Spinal Cord   总被引:1,自引:0,他引:1  
Glycine was taken up by a synaptic vesicle fraction from spinal cord in a Mg-ATP-dependent manner. The accumulation of glycine was inhibited by carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and nigericin, agents known to destroy the proton gradient across the vesicle membrane. Vesicular uptake of glycine was clearly different from synaptosomal uptake, with respect to both the affinity constant and the effect of Na+, ATP, CCCP, and temperature. Oligomycin and strychnine did not inhibit the vesicular uptake, showing that neither mitochondrial H(+)-ATPase nor binding to strychnine-sensitive glycine receptors was involved. It is suggested that the vesicular uptake of glycine is driven by a proton gradient generated by a Mg2(+)-ATPase. A low concentration of Cl- had little effect on the uptake of glycine, whereas the uptake of glutamate in the same experiment was highly stimulated. High concentrations of gamma-amino-n-butyric acid and beta-alanine inhibited vesicular glycine uptake, but glutamate did not. Accumulation of glycine was found to be fourfold higher in a spinal cord synaptic vesicle fraction than in a vesicle fraction from cerebral cortex.  相似文献   

16.
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain.  相似文献   

17.
Zinc is essential for the normal development and function of the CNS, although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied 65Zn uptake by brain from blood and have measured the blood-brain barrier permeability to 65Zn in the anaesthetised rat in vivo. Adult male Wistar rats within the weight range 500-600 g were used. 65ZnCl2 and 125I-albumin, the latter serving as a vascular marker, were injected intravenously in a bolus of normal saline. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 h, after which the whole brain was removed, dissected, and analysed for radioisotope activity. Data have been analysed by graphical analysis, which suggests that after 30 min of circulation, 65Zn uptake by brain from blood is unidirectional with an influx rate constant, Kin, of approximately 5 X 10(-4) ml/min/g. At circulation times of less than 30 min, 65Zn fluxes between blood and brain are bidirectional, where influx has a K value of greater than 5 X 10(-4) ml/min/g. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for 65Zn of approximately 4 ml/100 g, which is not CSF.  相似文献   

18.
Dopamine Uptake by Rat Striatal Synaptosomes: A Compartmental Analysis   总被引:2,自引:3,他引:2  
Abstract: Dopamine (DA) uptake into synaptosomes from rat corpus striatum was studied in the presence of a monoamine oxidase (MAO) inhibitor and dithiothreitol, by means of a filtration technique. Under these conditions a steady state develops rapidly in which the synaptosomal DA content remains constant while the continuing DA uptake is counterbalanced by DA efflux from the synaptosome. Exchange of synaptosomal [3H]DA and [14C]DA was measured under these conditions. In timecourse experiments it was found that exchange could be described significantly better by a three-compartment model than by a two-compartment model. However, if synaptosomes from reserpine-pretreated animals were used, analysis according to a three-compartment model did not result in a significantly better fit compared with a two-compartment model. Subsequently, kinetic transfer parameters describing DA fluxes between compartments at different DA concentrations were calculated from the fitted exchange curves. A Michaelis-Menten kinetic analysis indicated that only the in-series three-compartment configuration, in which DA is taken up from the medium into one synaptosomal compartment, from which it can subsequently be transferred to a second compartment without direct access to the medium, gave kinetically acceptable results. Transfer parameters in synaptosomes from reserpine-treated rats were comparable to those parameters describing DA transport between the medium and the first intrasynaptosomal compartment as measured under control conditions. Morover, it was found that potassium depolarization of synaptosomes resulted in a release of DA in a quantity similar to that found in the second intrasynaptosomal compartment. It is suggested that the two intrasynaptosomal compartments found correspond to a cytoplasmatic and vesicular DA pool, respectively. The functional significance of these findings is discussed in terms of the regulation of DA levels within the nerve terminal.  相似文献   

19.
Brief freezing as a means of transiently permeabilizing synaptosomes was explored. Rat brain synaptosomes frozen and thawed in the presence of 5% dimethyl sulfoxide, a cryoprotectant, were shown to release, in a calcium-dependent manner, previously accumulated [3H]norepinephrine and [14C]acetylcholine in response to elevated [K+]. In addition, synaptosomes subjected to freeze/thaw were shown to retain their ability to exhibit resting protein phosphorylation, as well as stimulated protein phosphorylation occurring in response to calcium influx. Brief freezing of synaptosomes in the presence of [gamma-32P]ATP and either the catalytic subunit of cyclic AMP-dependent protein kinase or calcium/calmodulin-dependent protein kinase II rendered the synaptosomal interior accessible to these agents, as reflected by the phosphorylation of substrate proteins, such as synapsin I, which reside within the nerve terminal. Inclusion of inhibitors of these protein kinases during freeze/thaw blocked synaptosomal protein phosphorylation, indicating that the inhibitors were also introduced. After freezing, the synaptosomes resealed rapidly and spontaneously, as shown by the inability of any of the agents to elicit an effect on phosphorylation when added at the end of the freezing period. The permeabilization procedure should contribute to an understanding of the functional roles of phosphoproteins, and of their associated protein kinases and protein phosphatases, in nerve terminals.  相似文献   

20.
Abstract— A synaptosome-enriched fraction from sheep cortex was incubated with l -fucose. The uptake of the sugar into this preparation was dependent on time, temperature, and concentration. A A K mapp of 0.94 m m - l -fucose and a V maxapp value of 0.24 n m - l -fucose/mg synaptosomal soluble protein/20 min was determined. After incubation for 10 min at 25°C with l -[3H]fucose, 70% of the radioactive label was found in the soluble fraction. DEAE-cellulose chromatography resulted in the elution of three fucosylprotein peaks which were then characterised by gel filtration and sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE). At least eleven 3H protein-staining bands were identified with M. W. 13,000-115,000. Control experiments involving the incubation of the hexose with heat-treated synaptosomes and myelin, mitochondria, and microsomes indicated that the tritiated material associated with the synaptosomal soluble fraction was not due to nonspecific binding or to the presence of contaminating subcellular material. A 3H glycopeptide was identified, and on analysis the carbohydrate moiety was found to be rich in sialic acid, fucose, galactose, mannose, and N -acetylglucosamine. Mild acid treatment of the glycopeptide released fucose, which implies that this carbohydrate occupies a terminal position in the oligosaccharide chain. From these results it is proposed that synthesis or the modification of soluble fucosylglycoproteins is possible in synaptosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号