首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ca2+-dependent phosphorylation of tyrosine hydroxylase in PC12 cells   总被引:5,自引:1,他引:4  
Ca2+-dependent protein phosphorylation has been detected in numerous tissues and may mediate some of the effects of hormones and other extracellular stimuli on cell function. In this paper we demonstrate that a Ca2+/calmodulin-dependent protein kinase similar to the enzyme previously purified and characterized from rat brain is present in PC12, a rat pheochromocytoma cell line. We show that Ca2+ influx elicited by various forms of cell stimulation leads to increased 32P incorporation into tyrosine hydroxylase (TH), a major phosphoprotein in these cells. Several other unidentified proteins are either phosphorylated or dephosphorylated as a result of Ca2+ influx. Acetylcholine stimulates TH phosphorylation by activation of nicotinic receptors. K+-induced depolarization stimulates TH phosphorylation in a Ca2+-dependent manner, presumably by opening voltage-dependent Ca2+ channels. Ca2+ influx that results from the direct effects of the ionophore A23187 also leads to TH phosphorylation. Phosphorylation of TH is accompanied by an activation of the enzyme. These Ca2+-dependent effects are independent of cyclic AMP and thus implicate a Ca2+-dependent protein kinase as a mediator of both hormonal and electrical stimulation of PC12 cells.  相似文献   

2.
The effect of natural salmon calcitonin on accumulation in plasma of 1 alpha,25-dihydroxy-[3H]cholecalciferol from 25-hydroxy[3H]cholecalciferol in vivo was investigated in vitamin D-deficient thyroparathyroidectomized rats into which graded doses of the hormone were continuously infused by use of a balance study system. A dose-dependent increase in plasma concentrations of 1 alpha,25-dihydroxy[3H]cholecalciferol was observed with calcitonin infusion for 6--30h at a rate greater than 20 M.R.C. m-units/h. Infusion of parathyrin or cyclic AMP produced a similar stimulation [Horiuchi, Suda, Takahashi, Shimazawa & Ogata (1977) Endocrinoly 101, 969--974], but the maximal effect of calcitonin was additive to that of either parathyrin or cyclic AMP. Furthermore concurrent infusion of theophylline (0.5 mumol/h) did not potentiate the effect of submaximal doses (3 and 20 M.R.C. m-units/h) of calcitonin. Plasma concentrations of calcium showed a decrease with calcitonin infusion for 30h, but those of Pi remained unchanged. These results strongly suggest that the rat kidney is endowed with a calcitonin-sensitive 1 alpha-hydroxylase system that is separate from the parathyrin/cyclic AMP system and is independent of changes in plasma Pi.  相似文献   

3.
The level of cyclic AMP in various fractions of rat skeletal tissue was measured after in vitro or in vivo administration of parathyroid hormone and calcitonin. Incubations of bone fractions prepared from young (5 weeks of age thyroparathyroidectomized rats revealed that both parathyroid hormone and calcitonin increased the cyclic AMP level in fractions of epiphysis, metaphysis and marrow cells. Cyclic AMP accumulation in incubated perisoteum and diaphysis were induced solely by parathyroid hormone. In in vivo experiments the cyclic AMP level in the tibia of the thyroparathyroidectomized rat was increased by infusion of either parathyroid hormone or calcitonin, and the simultaneous administration of each maximally effective dose of the two hormones exhibited an additive effect. Within 2 min, parathyroid hormone infusion caused an elevation of cyclic AMP content in periosteum and metaphysis. Rapid increase of cyclic AMP in the metaphysis was also induced by calcitonin, and the effect of the two hormones on cyclic AMP accumulation in this fraction was additive. Small but significant increase of cyclic AMP in the diaphysis was detected at 5 min after the administration of parathyroid hormone. Calcitonin infusion did not show any consistent effects on periosteum and diaphysis.  相似文献   

4.
We studied the effects of calcitonin gene-related peptide (CGRP) on ciliary beat frequency (CBF) and electrical properties of canine tracheal epithelium by a photoelectric method and Ussing's short-circuit technique, respectively. CGRP dose dependently increased CBF, an effect that was accompanied by elevation of intracellular cyclic AMP but not affected by blockade of either Ca2+-influx or arachidonic acid metabolism. In contrast, CGRP elicited only a small and transient increase in short-circuit current without significant alterations in transepithelial potential difference or tissue conductance. These results suggest that CGRP may play a role in regulating airway mucociliary transport function.  相似文献   

5.
Glucagon was added to isolated rat hepatocytes, either alone or together with vasopressin or angiotensin II, and the effects on the initial 45Ca2+ uptake rate were investigated. Addition of glucagon alone which increased cyclic AMP content of the cells slightly increased the initial 45Ca2+ uptake rate. When glucagon was added together with vasopressin or angiotensin II--both of which when added separately increase the initial 45Ca2+ uptake rate but did not affect the cellular content of cyclic AMP--the measured initial 45Ca2+ uptake rate was larger than the sum of that seen with each hormone alone. This indicates that glucagon and Ca2+-linked hormones synergistically enhanced the Ca2+ influx in rat hepatocytes. These effects of glucagon can be mimicked by dibutyryl cyclic AMP or forskolin, suggesting that cyclic AMP augments both the resting Ca2+ and the vasopressin- or angiotensin II-stimulated influx. Measurement of the initial 45Ca2+ uptake rate as a function of the extracellular Ca2+ concentration indicated that the increase in the Ca2+ influx resulting from single or combined glucagon and vasopressin administration occurred through a homogeneous population of Ca2+ gates. These hormones were found to raise both the apparent Km for external Ca2+ and the apparent Vmax of the Ca2+ influx. The maximal increase in these two parameters was observed when the two hormones were added together. This suggests that glucagon and vasopressin synergistically stimulate the same Ca2+ gating mechanism. The dose-response curves for the action of glucagon or vasopressin applied in the presence of increasing concentrations of vasopressin or glucagon, respectively, showed that each hormone increases the maximal response to the other without affecting its ED50. It is proposed that glucagon and the Ca2+-linked hormones control the cellular concentration of two intermediates which are both necessary to allow Ca2+ entry into the cells.  相似文献   

6.
In a rat phrenic nerve-hemidiaphragm preparation, calcitonin gene-related peptide (CGRP) increased the twitch contraction induced by nerve or transmural stimulation dose dependently. Either electrical or high K+ stimulation of the phrenic nerve caused release of a CGRP-like immunoreactive substance (CGRP-LIS) in a Ca2(+)-dependent manner. Electrical stimulation of the phrenic nerve also increased the cyclic AMP content in diaphragm. This increase was not observed in Ca2(+)-free medium and was blocked by antiserum against CGRP. These results indicate that excitation of the motor nerve causes release of CGRP-LIS at nerve terminals and that the released CGRP-LIS increases the cyclic AMP content of skeletal muscles and potentiates twitch contraction.  相似文献   

7.
Calcitonin has a wide variety of actions on gastrointestinal function. In this study, we investigated the effects of calcitonin on the growth of human gastric carcinoma cell line KATO III in comparison with those of calcitonin gene-related peptide (CGRP). Calcitonin, but not CGRP, significantly and dose-dependently inhibited the growth of KATO III cells. This inhibition of cell growth was accompanied by an increase in cyclic AMP production. The proliferation of KATO III cells was also inhibited by forskolin and dibutyryl cyclic AMP, although agents which do not stimulate cyclic AMP production had no effect. Furthermore, in the presence of GTP, calcitonin stimulated adenylate cyclase activity in KATO III cell membranes, and this increase was reduced in the absence of GTP. On the other had, neither calcitonin nor CGRP enhanced the turnover of inositolphospholipid or the intracellular Ca2+ level. In addition, 125I-labeled human calcitonin was specifically bound to KATO III cell membranes, and this binding was dose-dependently displaced by unlabeled calcitonin but not CGRP. Furthermore, the specific binding of 125I-labeled human calcitonin to KATO III cell membranes was significantly reduced by addition of GTP but not ATP. These results suggest that calcitonin inhibits the growth of human gastric carcinoma cell line KATO III by stimulating cyclic AMP production via a GTP-dependent process coupled to specific calcitonin receptors.  相似文献   

8.
The effects of calcitonin, parathyroid hormone, and prostaglandin E2 on cyclic AMP production were studied in osteoclast-rich cultures derived from medullary bone of laying hens and from the long bones of newborn rats. Cyclic AMP was assayed biochemically in replicate cultures, and furthermore, changes in cytoplasmic fluorescence were sought by indirect immunofluorescence with rabbit anti-cyclic AMP and FITC-labelled goat anti-rabbit IgG. Treatment of rat osteoclasts with calcitonin increased cyclic AMP formation as measured biochemically, and this was confirmed by the immunofluorescence method. No such increase took place in chick osteoclasts. Prostaglandin E2 increased cyclic AMP production in both rat and chick osteoclasts as determined by both methods. Since the immunofluorescence method failed to detect a response to parathyroid hormone either in chick or rat osteoclasts, its variable biochemical effects were concluded to be due to actions on contaminating osteoblasts in the cultures. Thus it has been possible with a combined biochemical and immunocytochemical approach to define the cyclic AMP responses to the calcium-regulating hormones in rat and chick osteoclasts. The failure of calcitonin to increase cyclic AMP in chick osteoclasts identifies a need to investigate the nature of calcitonin action on avian osteoclasts, which may contribute to understanding of its actions on mammalian cells.  相似文献   

9.
The transport properties of brush-border membrane vesicles isolated by a calcium-precipitation method from the renal cortex of normal and parathyrin (parathyroid hormone)-treated rats were studied by a rapid-filtration technique. Parathyrin elicited a dose-dependent decrease in the Na+-dependent phosphate uptake by the brush-border membrane vesicles, but the uptake of D-glucose, Na+ and mannitol was not affected. A maximum inhibition of 30% was observed after the application of 30 U.S.P. units intramuscularly 1 h before the animals were killed. Intravenous infusion of dibutyryl cyclic AMP (0.5-1.5 MG) also decreased the phosphate uptake by the brush-border vesicles. Both dibutyryl cyclic AMP and parathyrin were ineffective when added in vitro to brush-border membrane vesicles isolated from normal rats. These data suggest that parathyrin exerts its action on the phosphate reabsorption in the renal proximal tubule by affecting the Na+/phosphate co-transport system in the brush-border membrane. The effects of parathyrin on Na+ and glucose transport, however, seem to be due to alterations to the driving forces for transport and not to the brush-border transport systems.  相似文献   

10.
The effects of melatonin on pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP and [Ca2+]i were studied in neonatal rat pituitary cells. The polypeptide increased cyclic AMP accumulation. In the presence of melatonin the increase of cyclic AMP was inhibited in a dose-dependent manner, the maximal inhibition was achieved with 1-10 nM melatonin. Pituitary adenylyl cyclase-activating polypeptide also increased [Ca2+]i in 30% of the pituitary cells and melatonin inhibited the effect. Most of the cells sensitive to adenylyl cyclase-activating polypeptide (77%) were also sensitive to GnRH, suggesting they are gonadotrophs. The remaining cells were not identified. The polypeptide-induced [Ca2+]i increase was inhibited in Ca2+-free medium in 2/3 of the cells indicating that Ca2+ influx was involved. To examine causal relationship between cyclic AMP and [Ca2+]i increase, we have studied the effect of adenylyl cyclase activation by forskolin on intracellular Ca2+ concentration. Forskolin had similar effects as adenylyl cyclase-activating polypeptide: it increased [Ca2+]i in the pituitary cells and the increase was dependent on presence of Ca2+ in the medium. Melatonin inhibited the forskolin induced [Ca2+]i increase. Our observations indicate that increase of cyclic AMP stimulates Ca2+ influx in the pituitary cells of neonatal rat and that this mechanism is involved in [Ca2+]i increase induced by the pituitary adenylyl cyclase-activating polypeptide. Because melatonin inhibits increase of cyclic AMP induced by pituitary adenylyl cyclase-activating polypeptide or forskolin, the inhibitory effect of melatonin on Ca2+-influx may be mediated by the decrease of cyclic AMP concentration. This mechanism of melatonin action has not been described previously. Because melatonin inhibits the polypeptide- or forskolin-induced [Ca2+]i also in the cells not sensitive to GnRH, melatonin receptors seem to be present on both gonadotrophs and non-gonadotrophic pituitary cells.  相似文献   

11.
We have studied the mode of action of three hormones (angiotensin, vasopressin and phenylephrine, an alpha-adrenergic agent) which promote liver glycogenolysis in a cyclic AMP-independent way, in comparison with that of glucagon, which is known to act essentially via cyclic AMP. The following observations were made using isolated rat hepatocytes: (a) In the normal Krebs-Henseleit bicarbonate medium, the hormones activated glycogen phosphorylase (EC 2.4.1.1) to about the same degree. In contrast to glucagon, the cyclic AMP-independent hormones did not activate either protein kinase (EC 2.7.1.37) or phosphorylase b kinase (EC 2.7.1.38). (b) The absence of Ca2+ from the incubation medium prevented the activation of glycogen phosphorylase by the cyclic AMP-independent agents and slowed down that induced by glucagon. (c) The ionophore A 23187 produced the same degree of activation of glycogen phosphorylase, provided that Ca2+ was present in the incubation medium. (d) Glucagon, cyclic AMP and three cyclic AMP-dependent hormones caused an enhanced uptake of 45Ca; it was verified that concentrations of angiotensin and of vasopressin known to occur in haemorrhagic conditions were able to produce phosphorylase activation and stimulate 45Ca uptake. (e) Appropriate antagonists (i.e. phentolamine against phenylephrine and an angiotensin analogue against angiotensin) prevented both the enhanced 45Ca uptake and the phosphorylase activation. We interpret our data in favour of a role of calcium (1) as the second messenger in liver for the three cyclic AMP-independent glycogenolytic hormones and (2) as an additional messenger for glucagon which, via cyclic AMP, will make calcium available to the cytoplasm either from extracellular or from intracellular pools. The target enzyme for Ca2+ is most probably phosphorylase b kinase.  相似文献   

12.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

13.
Somatostatin has recently been applied therapeutically for hypercalcitonemia in patients with calcitonin-producing tumours. Using calcitonin-secreting cells (C-cells) of the medullary thyroid carcinoma cell line rMTC 44-2, we investigated the inhibitory action of somatostatin on calcitonin release, cytosolic Ca2+ and Ca2+ channel currents. The Ca(2+)-induced rises of the cytosolic Ca2+ and calcitonin secretion were greatly inhibited by somatostatin or its stable analogue octreotide. The effects of somatostatin were pertussis toxin-sensitive. Under voltage clamp conditions, C-cells exhibited slowly inactivating Ca2+ channel currents. Bath application of 100 nM somatostatin reversibly reduced the Ca2+ channel current by about 30%. The Ca2+ channel current and its inhibition by somatostatin were not affected by intracellularly applied cyclic AMP. Moreover, pretreating the cells with pertussis toxin had no effect on the control Ca2+ channel currents but greatly abolished its inhibition by somatostatin. The data show that somatostatin suppresses the Ca(2+)-stimulated calcitonin secretion by inhibiting voltage-dependent Ca2+ channel currents and by lowering cytosolic Ca2+. These actions of somatostatin involve pertussis toxin-sensitive G-proteins and occur independently of changes in the cyclic AMP concentration.  相似文献   

14.
Intracellular recordings from cultured parietal cells of the rat gastric fundus showed that carbachol, pentagastrin, histamine (in the presence of isobutylmethylxanthine; IBMX) and dibutyryl cyclic AMP induced hyperpolarizing responses which were sensitive to a K+ channel blocker, quinine. The Ca2+ ionophore, ionomycin, also induced a quinine-sensitive hyperpolarization. Deprivation of extracellular Ca2+ preferentially inhibited the hyperpolarizing responses to histamine (plus IBMX) and to dibutyryl cyclic AMP. Caffeine, oxalate and dantrolene sodium, which are known to affect Ca2+ transport in the endoplasmic reticulum, selectively inhibited the carbachol response. Mitochondrial inhibitors (KCN and carbonylcyanide p-trifluoromethoxyphenylhydrazone) preferentially suppressed the gastrin response. Cytosolic Ca2+ measurements with fura-2 indicated that significant increases in the intracellular concentration of free Ca2+ were induced not only by Ca2+-mediated acid secretagogues (carbachol and gastrin), but also by a cyclic AMP-mediated secretagogue (histamine plus IBMX). Dibutyryl cyclic AMP also increased cytosolic Ca2+ ions. It is concluded that stimulation of receptors to histamine, carbachol and gastrin gives rise to mobilization of Ca2+ ions into the cytoplasm from the different sources, thereby stimulating Ca2+-activated K+ channels in cultured rat parietal cells.  相似文献   

15.
Parathyroid hormone (PTH) and calcitonin exert well known effects on the renal tubule which are thought to involve specific hormone receptors and adenyl cyclase. In the intestine, it is not clear whether the action of PTH and calcitonin is only indirect or also direct, and their mechanisms of action are much less well established. In the present study, possible direct effects of PTH and calcitonin on Na+ transport in isolated intestinal epithelial cells of rats were investigated. In the presence of bovine PTH (1.2 I.U/ml) in the incubation medium, the Na+ efflux rate constant (oKNa) of isolated enterocytes was significantly reduced when compared to that in control experiments with the hormone vehicle only. The mean depression of oKNa induced by bovine PTH was 26% as compared to the control (100%) and to that induced by ouabain (4.0 mM) which was 44%. No depressant effect of bovine PTH on oKNa was observed when the isolated enterocytes were incubated with ouabain (4.0 mM). Thus, bovine PTH appeared to inhibit the ouabain-sensitive Na+ pump. When incubating the isolated epithelial cells in an EGTA-containing CA2+-free medium, bovine PTH lost its capacity to inhibit oKNa. Thus, the presence of extracellular Ca2+ appeared necessary for the inhibitory effect of bovine PTH. In contrast to its effect on oKNa, bovine PTH induced no change in net Na+ uptake by isolated enterocytes. Moreover, no significant effect on enterocyte Na+ transport could be demonstrated for salmon or porcine calcitonin at two different concentrations in the incubation medium, Neither bovine PTH nor salmon calcitonin induced significant changes in enterocyte cyclic AMP or cycle GMP concentrations. It was concluded that bovine PTH, but not calcitonin, exerted a directed inhibitory effect on the ouabain-sensitive oKNa of isolated rat enterocytes. The effect of bovine PTH occurred without measurable activation of the cyclic nucleotide system but needed the presence of Ca2+ in the incubation medium to be operative.  相似文献   

16.
Cells originally dispersed from whole juvenile male Hampshire pig kidney and maintained in monolayer culture, increased cyclic AMP content in response to incubation with salmon calcitonin or antidiuretic hormone. Parathyroid hormone and epinephrine did not affect cyclic AMP content. The apparent Km for arginine vasopressin in the porcine cells was 3.0 nM which is similar to the value obtained in single segments of rabbit kidney tubule. The apparent Km for salmon calcitonin of 2.7 nM is higher than that reported for the rabbit nephron segments, but comparable to the Km obtained in rat kidney homogenates. Exposure of the porcine cells to exogenous prostaglandin E2 did not affect cyclic AMP responses to other hormones. In the cultured porcine kidney cells the pattern of hormone response is similar to that observed in nephron segments prepared from the medullary portion of the thick ascending limb of the loop of Henle, and these findings suggest that the porcine cells may be related to cells present in the medullary region of the kidney tubule.  相似文献   

17.
Vasoactive intestinal peptide (VIP) and, to a lesser extent, glucagon were found to increase intracellular cyclic AMP rapidly in cultured glial (Müller) cells of the chick embryo retina. Although VIP elicited higher cyclic AMP accumulation than glucagon at each concentration tested, the half-maximal concentrations were similar, i.e., 6 X 10(-8) M for VIP and 8 X 10(-8) M for glucagon. Secretin had a minimal effect on cyclic AMP accumulation even at a very high (5 X 10(-6) M) concentration. Several other peptide and nonpeptide putative agonists also had little effect on cyclic AMP accumulation. The cultured Müller cell may thus be a useful model for examining VIP and glucagon effects on glial elements of the CNS.  相似文献   

18.
Phenolsulfotransferase (PST) activity towards phenol and monoamines was determined in rat brain and in primary cultures of rat astrocytes. The pH requirement.K m values and the proportion of PST activity with respect to phenol and dopamine as substrates were similar between PST from the glial cells and the rat cortex. The enzyme activity increased with age in the brain of older animals, and also with increasing incubation time in the primary culture of astroglia. The specific PST activity of the astroglia appeared to be higher than that of the brain enzyme. In glial cultures treated with 0.25 mM dibutyryl cyclic AMP in the same culture conditions, PST activity is suppressed to about 25% of its untreated counterpart, even though dibutyryl cyclic AMP at concentrations of 1 mM only slightly inhibited PST activity in vitro.  相似文献   

19.
The effect of human parathyroid hormone-(1-34) (hPTH) and human calcitonin (hCT) on the activity of the Ca2(+)-extrusion pump in liver plasma membranes was studied. Both hormones were found to be potent inhibitors of Ca2+ transport and the related high-affinity (Ca2(+)-Mg2+)-ATPase activity, causing maximal inhibition of 25-30% at concentrations of 100 nM. Half-maximal inhibition was observed with 20 nM-hPTH and with 0.5 nM-hCT. By comparison, salmon calcitonin and intact bovine parathyroid hormone-(1-84) were inhibitory only at 10 microM. The effects of hCT and hPTH on the Ca2+ pump activity were not mimicked by cyclic AMP. Also, 10 microM of either hPTH-(1-34) or hCT did not alter the 45Ca2+ influx rate into isolated hepatocytes. We conclude that inhibition of Ca2+ efflux, rather than the stimulation of Ca2+ influx, may play a functional role in the control of hepatic calcium homeostasis by hPTH-(1-34) and hCT.  相似文献   

20.
A mitochondria-free membrane fraction prepared from rat myometrium accumulated 45Ca2+ in the presence of oxalic acid and ATP. The rate of transport of Ca2+ into the membranous vesicles was increased by greater than 50% in the presence of 3',5'-cyclic AMP, but not by 2',3'-cyclic AMP or 5'AMP. Membrane ATPase activity was stimulated by Mg2+; slight additional stimulation was obtained in the presence of Na+ and K+ but not in the presence of Ca+2. Despite the cyclic AMP sensitivity of membrane ATPase activity, the absence of any effect of inhibitors of Ca2+-transport suggest it has little to do with Ca2+ accumulation by the membranes. Cyclic AMP-induced increase in Ca2+-transport and membrane ATPase activity was duplicated in vivo by incubating uteri in 10(-4)M isoproterenol prior to membrane isolation. Isoproterenol has been previously shown to increase myometrial cyclic AMP levels, and changes in Ca2+-transport by cell membranes in relation to intracellular cyclic AMP levels may be the mechanism through which hormones modulate uterine contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号